WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(x) -> x f(c(s(x),y)) -> f(c(x,s(y))) f(f(x)) -> f(d(f(x))) g(c(x,s(y))) -> g(c(s(x),y)) - Signature: {f/1,g/1} / {c/2,d/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {c,d,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x) -> x f(c(s(x),y)) -> f(c(x,s(y))) f(f(x)) -> f(d(f(x))) g(c(x,s(y))) -> g(c(s(x),y)) - Signature: {f/1,g/1} / {c/2,d/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {c,d,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(c(x,y)){x -> s(x)} = f(c(s(x),y)) ->^+ f(c(x,s(y))) = C[f(c(x,s(y))) = f(c(x,y)){y -> s(y)}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x) -> x f(c(s(x),y)) -> f(c(x,s(y))) f(f(x)) -> f(d(f(x))) g(c(x,s(y))) -> g(c(s(x),y)) - Signature: {f/1,g/1} / {c/2,d/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {c,d,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(x) -> c_1() f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) f#(f(x)) -> c_3(f#(d(f(x))),f#(x)) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x) -> c_1() f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) f#(f(x)) -> c_3(f#(d(f(x))),f#(x)) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) - Weak TRS: f(x) -> x f(c(s(x),y)) -> f(c(x,s(y))) f(f(x)) -> f(d(f(x))) g(c(x,s(y))) -> g(c(s(x),y)) - Signature: {f/1,g/1,f#/1,g#/1} / {c/2,d/1,s/1,c_1/0,c_2/1,c_3/2,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {c,d,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2}. Here rules are labelled as follows: 1: f#(x) -> c_1() 2: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) 3: f#(f(x)) -> c_3(f#(d(f(x))),f#(x)) 4: g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) - Weak DPs: f#(x) -> c_1() f#(f(x)) -> c_3(f#(d(f(x))),f#(x)) - Weak TRS: f(x) -> x f(c(s(x),y)) -> f(c(x,s(y))) f(f(x)) -> f(d(f(x))) g(c(x,s(y))) -> g(c(s(x),y)) - Signature: {f/1,g/1,f#/1,g#/1} / {c/2,d/1,s/1,c_1/0,c_2/1,c_3/2,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {c,d,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) -->_1 f#(x) -> c_1():3 -->_1 f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))):1 2:S:g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) -->_1 g#(c(x,s(y))) -> c_4(g#(c(s(x),y))):2 3:W:f#(x) -> c_1() 4:W:f#(f(x)) -> c_3(f#(d(f(x))),f#(x)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: f#(f(x)) -> c_3(f#(d(f(x))),f#(x)) 3: f#(x) -> c_1() ** Step 1.b:4: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) - Weak TRS: f(x) -> x f(c(s(x),y)) -> f(c(x,s(y))) f(f(x)) -> f(d(f(x))) g(c(x,s(y))) -> g(c(s(x),y)) - Signature: {f/1,g/1,f#/1,g#/1} / {c/2,d/1,s/1,c_1/0,c_2/1,c_3/2,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {c,d,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) ** Step 1.b:5: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) - Signature: {f/1,g/1,f#/1,g#/1} / {c/2,d/1,s/1,c_1/0,c_2/1,c_3/2,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {c,d,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(c) = [1] x2 + [8] p(d) = [1] x1 + [1] p(f) = [1] p(g) = [4] x1 + [2] p(s) = [1] x1 + [8] p(f#) = [0] p(g#) = [1] x1 + [2] p(c_1) = [1] p(c_2) = [8] x1 + [0] p(c_3) = [1] p(c_4) = [1] x1 + [4] Following rules are strictly oriented: g#(c(x,s(y))) = [1] y + [18] > [1] y + [14] = c_4(g#(c(s(x),y))) Following rules are (at-least) weakly oriented: f#(c(s(x),y)) = [0] >= [0] = c_2(f#(c(x,s(y)))) ** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) - Weak DPs: g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) - Signature: {f/1,g/1,f#/1,g#/1} / {c/2,d/1,s/1,c_1/0,c_2/1,c_3/2,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {c,d,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(c) = [1] x1 + [0] p(d) = [1] x1 + [4] p(f) = [8] x1 + [1] p(g) = [0] p(s) = [1] x1 + [8] p(f#) = [1] x1 + [9] p(g#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [4] p(c_3) = [0] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: f#(c(s(x),y)) = [1] x + [17] > [1] x + [13] = c_2(f#(c(x,s(y)))) Following rules are (at-least) weakly oriented: g#(c(x,s(y))) = [0] >= [0] = c_4(g#(c(s(x),y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(c(s(x),y)) -> c_2(f#(c(x,s(y)))) g#(c(x,s(y))) -> c_4(g#(c(s(x),y))) - Signature: {f/1,g/1,f#/1,g#/1} / {c/2,d/1,s/1,c_1/0,c_2/1,c_3/2,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {c,d,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))