WORST_CASE(Omega(n^1),O(n^4))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^4))
    + Considered Problem:
        - Strict TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(s(0())) -> 0()
            log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus,le,log,minus,quot} and constructors {0,false,s
            ,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(s(0())) -> 0()
            log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus,le,log,minus,quot} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          le(x,y){x -> s(x),y -> s(y)} =
            le(s(x),s(y)) ->^+ le(x,y)
              = C[le(x,y) = le(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(s(0())) -> 0()
            log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus,le,log,minus,quot} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          if_minus#(true(),s(x),y) -> c_2()
          le#(0(),y) -> c_3()
          le#(s(x),0()) -> c_4()
          le#(s(x),s(y)) -> c_5(le#(x,y))
          log#(s(0())) -> c_6()
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          minus#(0(),y) -> c_8()
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          quot#(0(),s(y)) -> c_10()
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            if_minus#(true(),s(x),y) -> c_2()
            le#(0(),y) -> c_3()
            le#(s(x),0()) -> c_4()
            le#(s(x),s(y)) -> c_5(le#(x,y))
            log#(s(0())) -> c_6()
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            minus#(0(),y) -> c_8()
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
            quot#(0(),s(y)) -> c_10()
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(s(0())) -> 0()
            log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,3,4,6,8,10}
        by application of
          Pre({2,3,4,6,8,10}) = {1,5,7,9,11}.
        Here rules are labelled as follows:
          1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          2: if_minus#(true(),s(x),y) -> c_2()
          3: le#(0(),y) -> c_3()
          4: le#(s(x),0()) -> c_4()
          5: le#(s(x),s(y)) -> c_5(le#(x,y))
          6: log#(s(0())) -> c_6()
          7: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          8: minus#(0(),y) -> c_8()
          9: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          10: quot#(0(),s(y)) -> c_10()
          11: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak DPs:
            if_minus#(true(),s(x),y) -> c_2()
            le#(0(),y) -> c_3()
            le#(s(x),0()) -> c_4()
            log#(s(0())) -> c_6()
            minus#(0(),y) -> c_8()
            quot#(0(),s(y)) -> c_10()
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(s(0())) -> 0()
            log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
             -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4
             -->_1 minus#(0(),y) -> c_8():10
          
          2:S:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),0()) -> c_4():8
             -->_1 le#(0(),y) -> c_3():7
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2
          
          3:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
             -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5
             -->_2 quot#(0(),s(y)) -> c_10():11
             -->_1 log#(s(0())) -> c_6():9
             -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):3
          
          4:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
             -->_2 le#(s(x),0()) -> c_4():8
             -->_1 if_minus#(true(),s(x),y) -> c_2():6
             -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2
             -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1
          
          5:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(0(),s(y)) -> c_10():11
             -->_2 minus#(0(),y) -> c_8():10
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5
             -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4
          
          6:W:if_minus#(true(),s(x),y) -> c_2()
             
          
          7:W:le#(0(),y) -> c_3()
             
          
          8:W:le#(s(x),0()) -> c_4()
             
          
          9:W:log#(s(0())) -> c_6()
             
          
          10:W:minus#(0(),y) -> c_8()
             
          
          11:W:quot#(0(),s(y)) -> c_10()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: log#(s(0())) -> c_6()
          11: quot#(0(),s(y)) -> c_10()
          10: minus#(0(),y) -> c_8()
          7: le#(0(),y) -> c_3()
          6: if_minus#(true(),s(x),y) -> c_2()
          8: le#(s(x),0()) -> c_4()
** Step 1.b:4: UsableRules WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(s(0())) -> 0()
            log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
** Step 1.b:5: DecomposeDG WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        and a lower component
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Further, following extension rules are added to the lower component.
          log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
          log#(s(s(x))) -> quot#(x,s(s(0())))
*** Step 1.b:5.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
             -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))))
*** Step 1.b:5.a:2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_7) = {1}
        
        Following symbols are considered usable:
          {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#}
        TcT has computed the following interpretation:
                  p(0) = [1]                  
              p(false) = [1]                  
           p(if_minus) = [1] x2 + [0]         
                 p(le) = [14]                 
                p(log) = [1] x1 + [1]         
              p(minus) = [1] x1 + [0]         
               p(quot) = [1] x1 + [0]         
                  p(s) = [1] x1 + [3]         
               p(true) = [0]                  
          p(if_minus#) = [1] x1 + [1]         
                p(le#) = [1] x1 + [1] x2 + [1]
               p(log#) = [3] x1 + [0]         
             p(minus#) = [4] x1 + [1] x2 + [0]
              p(quot#) = [1] x1 + [1]         
                p(c_1) = [2] x1 + [1]         
                p(c_2) = [0]                  
                p(c_3) = [2]                  
                p(c_4) = [2]                  
                p(c_5) = [1]                  
                p(c_6) = [2]                  
                p(c_7) = [1] x1 + [8]         
                p(c_8) = [2]                  
                p(c_9) = [2] x1 + [1]         
               p(c_10) = [1]                  
               p(c_11) = [1]                  
        
        Following rules are strictly oriented:
        log#(s(s(x))) = [3] x + [18]                   
                      > [3] x + [17]                   
                      = c_7(log#(s(quot(x,s(s(0()))))))
        
        
        Following rules are (at-least) weakly oriented:
        if_minus(false(),s(x),y) =  [1] x + [3]                
                                 >= [1] x + [3]                
                                 =  s(minus(x,y))              
        
         if_minus(true(),s(x),y) =  [1] x + [3]                
                                 >= [1]                        
                                 =  0()                        
        
                    minus(0(),y) =  [1]                        
                                 >= [1]                        
                                 =  0()                        
        
                   minus(s(x),y) =  [1] x + [3]                
                                 >= [1] x + [3]                
                                 =  if_minus(le(s(x),y),s(x),y)
        
                  quot(0(),s(y)) =  [1]                        
                                 >= [1]                        
                                 =  0()                        
        
                 quot(s(x),s(y)) =  [1] x + [3]                
                                 >= [1] x + [3]                
                                 =  s(quot(minus(x,y),s(y)))   
        
*** Step 1.b:5.a:3: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:5.b:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
          log#(s(s(x))) -> quot#(x,s(s(0())))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        and a lower component
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Further, following extension rules are added to the lower component.
          log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
          log#(s(s(x))) -> quot#(x,s(s(0())))
          quot#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
**** Step 1.b:5.b:1.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):1
          
          2:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
             -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):3
             -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):2
          
          3:W:log#(s(s(x))) -> quot#(x,s(s(0())))
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
**** Step 1.b:5.b:1.a:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if_minus) = {1},
            uargs(quot) = {1},
            uargs(s) = {1},
            uargs(log#) = {1},
            uargs(quot#) = {1},
            uargs(c_11) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
                p(false) = [0]                  
             p(if_minus) = [1] x1 + [1] x2 + [0]
                   p(le) = [0]                  
                  p(log) = [2] x1 + [1]         
                p(minus) = [1] x1 + [0]         
                 p(quot) = [1] x1 + [1]         
                    p(s) = [1] x1 + [2]         
                 p(true) = [0]                  
            p(if_minus#) = [2] x1 + [4] x3 + [1]
                  p(le#) = [2]                  
                 p(log#) = [1] x1 + [4]         
               p(minus#) = [1] x1 + [0]         
                p(quot#) = [1] x1 + [7]         
                  p(c_1) = [2]                  
                  p(c_2) = [1]                  
                  p(c_3) = [0]                  
                  p(c_4) = [0]                  
                  p(c_5) = [0]                  
                  p(c_6) = [2]                  
                  p(c_7) = [0]                  
                  p(c_8) = [0]                  
                  p(c_9) = [1] x1 + [1]         
                 p(c_10) = [0]                  
                 p(c_11) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          quot#(s(x),s(y)) = [1] x + [9]                 
                           > [1] x + [7]                 
                           = c_11(quot#(minus(x,y),s(y)))
          
          
          Following rules are (at-least) weakly oriented:
                     log#(s(s(x))) =  [1] x + [8]                
                                   >= [1] x + [7]                
                                   =  log#(s(quot(x,s(s(0()))))) 
          
                     log#(s(s(x))) =  [1] x + [8]                
                                   >= [1] x + [7]                
                                   =  quot#(x,s(s(0())))         
          
          if_minus(false(),s(x),y) =  [1] x + [2]                
                                   >= [1] x + [2]                
                                   =  s(minus(x,y))              
          
           if_minus(true(),s(x),y) =  [1] x + [2]                
                                   >= [0]                        
                                   =  0()                        
          
                         le(0(),y) =  [0]                        
                                   >= [0]                        
                                   =  true()                     
          
                      le(s(x),0()) =  [0]                        
                                   >= [0]                        
                                   =  false()                    
          
                     le(s(x),s(y)) =  [0]                        
                                   >= [0]                        
                                   =  le(x,y)                    
          
                      minus(0(),y) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                     minus(s(x),y) =  [1] x + [2]                
                                   >= [1] x + [2]                
                                   =  if_minus(le(s(x),y),s(x),y)
          
                    quot(0(),s(y)) =  [1]                        
                                   >= [0]                        
                                   =  0()                        
          
                   quot(s(x),s(y)) =  [1] x + [3]                
                                   >= [1] x + [3]                
                                   =  s(quot(minus(x,y),s(y)))   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
**** Step 1.b:5.b:1.a:3: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:5.b:1.b:1: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
          log#(s(s(x))) -> quot#(x,s(s(0())))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          quot#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        and a lower component
          le#(s(x),s(y)) -> c_5(le#(x,y))
        Further, following extension rules are added to the lower component.
          if_minus#(false(),s(x),y) -> minus#(x,y)
          log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
          log#(s(s(x))) -> quot#(x,s(s(0())))
          minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y)
          minus#(s(x),y) -> le#(s(x),y)
          quot#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
***** Step 1.b:5.b:1.b:1.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
             -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2
          
          2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
             -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1
          
          3:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
             -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):4
             -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):3
          
          4:W:log#(s(s(x))) -> quot#(x,s(s(0())))
             -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):6
             -->_1 quot#(s(x),s(y)) -> minus#(x,y):5
          
          5:W:quot#(s(x),s(y)) -> minus#(x,y)
             -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2
          
          6:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
             -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):6
             -->_1 quot#(s(x),s(y)) -> minus#(x,y):5
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
***** Step 1.b:5.b:1.b:1.a:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
        - Weak DPs:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if_minus) = {1},
            uargs(quot) = {1},
            uargs(s) = {1},
            uargs(if_minus#) = {1},
            uargs(log#) = {1},
            uargs(quot#) = {1},
            uargs(c_1) = {1},
            uargs(c_9) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
                p(false) = [0]                  
             p(if_minus) = [1] x1 + [1] x2 + [0]
                   p(le) = [0]                  
                  p(log) = [1] x1 + [0]         
                p(minus) = [1] x1 + [0]         
                 p(quot) = [1] x1 + [0]         
                    p(s) = [1] x1 + [0]         
                 p(true) = [0]                  
            p(if_minus#) = [1] x1 + [1] x3 + [4]
                  p(le#) = [1] x1 + [1] x2 + [4]
                 p(log#) = [1] x1 + [1]         
               p(minus#) = [1] x2 + [1]         
                p(quot#) = [1] x1 + [1] x2 + [1]
                  p(c_1) = [1] x1 + [1]         
                  p(c_2) = [1]                  
                  p(c_3) = [1]                  
                  p(c_4) = [0]                  
                  p(c_5) = [1] x1 + [0]         
                  p(c_6) = [1]                  
                  p(c_7) = [2] x1 + [1] x2 + [0]
                  p(c_8) = [0]                  
                  p(c_9) = [1] x1 + [0]         
                 p(c_10) = [1]                  
                 p(c_11) = [1] x2 + [0]         
          
          Following rules are strictly oriented:
          if_minus#(false(),s(x),y) = [1] y + [4]     
                                    > [1] y + [2]     
                                    = c_1(minus#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
                     log#(s(s(x))) =  [1] x + [1]                      
                                   >= [1] x + [1]                      
                                   =  log#(s(quot(x,s(s(0())))))       
          
                     log#(s(s(x))) =  [1] x + [1]                      
                                   >= [1] x + [1]                      
                                   =  quot#(x,s(s(0())))               
          
                    minus#(s(x),y) =  [1] y + [1]                      
                                   >= [1] y + [4]                      
                                   =  c_9(if_minus#(le(s(x),y),s(x),y))
          
                  quot#(s(x),s(y)) =  [1] x + [1] y + [1]              
                                   >= [1] y + [1]                      
                                   =  minus#(x,y)                      
          
                  quot#(s(x),s(y)) =  [1] x + [1] y + [1]              
                                   >= [1] x + [1] y + [1]              
                                   =  quot#(minus(x,y),s(y))           
          
          if_minus(false(),s(x),y) =  [1] x + [0]                      
                                   >= [1] x + [0]                      
                                   =  s(minus(x,y))                    
          
           if_minus(true(),s(x),y) =  [1] x + [0]                      
                                   >= [0]                              
                                   =  0()                              
          
                         le(0(),y) =  [0]                              
                                   >= [0]                              
                                   =  true()                           
          
                      le(s(x),0()) =  [0]                              
                                   >= [0]                              
                                   =  false()                          
          
                     le(s(x),s(y)) =  [0]                              
                                   >= [0]                              
                                   =  le(x,y)                          
          
                      minus(0(),y) =  [0]                              
                                   >= [0]                              
                                   =  0()                              
          
                     minus(s(x),y) =  [1] x + [0]                      
                                   >= [1] x + [0]                      
                                   =  if_minus(le(s(x),y),s(x),y)      
          
                    quot(0(),s(y)) =  [0]                              
                                   >= [0]                              
                                   =  0()                              
          
                   quot(s(x),s(y)) =  [1] x + [0]                      
                                   >= [1] x + [0]                      
                                   =  s(quot(minus(x,y),s(y)))         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
***** Step 1.b:5.b:1.b:1.a:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
        - Weak DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if_minus) = {1},
            uargs(quot) = {1},
            uargs(s) = {1},
            uargs(if_minus#) = {1},
            uargs(log#) = {1},
            uargs(quot#) = {1},
            uargs(c_1) = {1},
            uargs(c_9) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
                p(false) = [0]                  
             p(if_minus) = [1] x1 + [1] x2 + [0]
                   p(le) = [0]                  
                  p(log) = [1]                  
                p(minus) = [1] x1 + [0]         
                 p(quot) = [1] x1 + [1]         
                    p(s) = [1] x1 + [1]         
                 p(true) = [0]                  
            p(if_minus#) = [1] x1 + [1] x2 + [1]
                  p(le#) = [1] x1 + [1] x2 + [0]
                 p(log#) = [1] x1 + [2]         
               p(minus#) = [1] x1 + [2]         
                p(quot#) = [1] x1 + [3]         
                  p(c_1) = [1] x1 + [0]         
                  p(c_2) = [0]                  
                  p(c_3) = [1]                  
                  p(c_4) = [1]                  
                  p(c_5) = [1] x1 + [1]         
                  p(c_6) = [2]                  
                  p(c_7) = [0]                  
                  p(c_8) = [0]                  
                  p(c_9) = [1] x1 + [0]         
                 p(c_10) = [0]                  
                 p(c_11) = [2]                  
          
          Following rules are strictly oriented:
          minus#(s(x),y) = [1] x + [3]                      
                         > [1] x + [2]                      
                         = c_9(if_minus#(le(s(x),y),s(x),y))
          
          
          Following rules are (at-least) weakly oriented:
          if_minus#(false(),s(x),y) =  [1] x + [2]                
                                    >= [1] x + [2]                
                                    =  c_1(minus#(x,y))           
          
                      log#(s(s(x))) =  [1] x + [4]                
                                    >= [1] x + [4]                
                                    =  log#(s(quot(x,s(s(0()))))) 
          
                      log#(s(s(x))) =  [1] x + [4]                
                                    >= [1] x + [3]                
                                    =  quot#(x,s(s(0())))         
          
                   quot#(s(x),s(y)) =  [1] x + [4]                
                                    >= [1] x + [2]                
                                    =  minus#(x,y)                
          
                   quot#(s(x),s(y)) =  [1] x + [4]                
                                    >= [1] x + [3]                
                                    =  quot#(minus(x,y),s(y))     
          
           if_minus(false(),s(x),y) =  [1] x + [1]                
                                    >= [1] x + [1]                
                                    =  s(minus(x,y))              
          
            if_minus(true(),s(x),y) =  [1] x + [1]                
                                    >= [0]                        
                                    =  0()                        
          
                          le(0(),y) =  [0]                        
                                    >= [0]                        
                                    =  true()                     
          
                       le(s(x),0()) =  [0]                        
                                    >= [0]                        
                                    =  false()                    
          
                      le(s(x),s(y)) =  [0]                        
                                    >= [0]                        
                                    =  le(x,y)                    
          
                       minus(0(),y) =  [0]                        
                                    >= [0]                        
                                    =  0()                        
          
                      minus(s(x),y) =  [1] x + [1]                
                                    >= [1] x + [1]                
                                    =  if_minus(le(s(x),y),s(x),y)
          
                     quot(0(),s(y)) =  [1]                        
                                    >= [0]                        
                                    =  0()                        
          
                    quot(s(x),s(y)) =  [1] x + [2]                
                                    >= [1] x + [2]                
                                    =  s(quot(minus(x,y),s(y)))   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
***** Step 1.b:5.b:1.b:1.a:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

***** Step 1.b:5.b:1.b:1.b:1: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
        - Weak DPs:
            if_minus#(false(),s(x),y) -> minus#(x,y)
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y)
            minus#(s(x),y) -> le#(s(x),y)
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if_minus) = {1},
            uargs(quot) = {1},
            uargs(s) = {1},
            uargs(if_minus#) = {1},
            uargs(log#) = {1},
            uargs(quot#) = {1},
            uargs(c_5) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [2]                  
                p(false) = [0]                  
             p(if_minus) = [1] x1 + [1] x2 + [0]
                   p(le) = [0]                  
                  p(log) = [1]                  
                p(minus) = [1] x1 + [0]         
                 p(quot) = [1] x1 + [0]         
                    p(s) = [1] x1 + [2]         
                 p(true) = [0]                  
            p(if_minus#) = [1] x1 + [1] x2 + [0]
                  p(le#) = [1] x1 + [1]         
                 p(log#) = [1] x1 + [1]         
               p(minus#) = [1] x1 + [2]         
                p(quot#) = [1] x1 + [4]         
                  p(c_1) = [1]                  
                  p(c_2) = [2]                  
                  p(c_3) = [0]                  
                  p(c_4) = [0]                  
                  p(c_5) = [1] x1 + [1]         
                  p(c_6) = [0]                  
                  p(c_7) = [0]                  
                  p(c_8) = [0]                  
                  p(c_9) = [1]                  
                 p(c_10) = [1]                  
                 p(c_11) = [1] x2 + [0]         
          
          Following rules are strictly oriented:
          le#(s(x),s(y)) = [1] x + [3]  
                         > [1] x + [2]  
                         = c_5(le#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
          if_minus#(false(),s(x),y) =  [1] x + [2]                 
                                    >= [1] x + [2]                 
                                    =  minus#(x,y)                 
          
                      log#(s(s(x))) =  [1] x + [5]                 
                                    >= [1] x + [3]                 
                                    =  log#(s(quot(x,s(s(0())))))  
          
                      log#(s(s(x))) =  [1] x + [5]                 
                                    >= [1] x + [4]                 
                                    =  quot#(x,s(s(0())))          
          
                     minus#(s(x),y) =  [1] x + [4]                 
                                    >= [1] x + [2]                 
                                    =  if_minus#(le(s(x),y),s(x),y)
          
                     minus#(s(x),y) =  [1] x + [4]                 
                                    >= [1] x + [3]                 
                                    =  le#(s(x),y)                 
          
                   quot#(s(x),s(y)) =  [1] x + [6]                 
                                    >= [1] x + [2]                 
                                    =  minus#(x,y)                 
          
                   quot#(s(x),s(y)) =  [1] x + [6]                 
                                    >= [1] x + [4]                 
                                    =  quot#(minus(x,y),s(y))      
          
           if_minus(false(),s(x),y) =  [1] x + [2]                 
                                    >= [1] x + [2]                 
                                    =  s(minus(x,y))               
          
            if_minus(true(),s(x),y) =  [1] x + [2]                 
                                    >= [2]                         
                                    =  0()                         
          
                          le(0(),y) =  [0]                         
                                    >= [0]                         
                                    =  true()                      
          
                       le(s(x),0()) =  [0]                         
                                    >= [0]                         
                                    =  false()                     
          
                      le(s(x),s(y)) =  [0]                         
                                    >= [0]                         
                                    =  le(x,y)                     
          
                       minus(0(),y) =  [2]                         
                                    >= [2]                         
                                    =  0()                         
          
                      minus(s(x),y) =  [1] x + [2]                 
                                    >= [1] x + [2]                 
                                    =  if_minus(le(s(x),y),s(x),y) 
          
                     quot(0(),s(y)) =  [2]                         
                                    >= [2]                         
                                    =  0()                         
          
                    quot(s(x),s(y)) =  [1] x + [2]                 
                                    >= [1] x + [2]                 
                                    =  s(quot(minus(x,y),s(y)))    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
***** Step 1.b:5.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            if_minus#(false(),s(x),y) -> minus#(x,y)
            le#(s(x),s(y)) -> c_5(le#(x,y))
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y)
            minus#(s(x),y) -> le#(s(x),y)
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0
            ,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_minus#,le#,log#,minus#,quot#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^4))