WORST_CASE(?,O(n^1))
* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0          
           p(S) = 0          
          p(f0) = 2          
          p(f1) = 2 + 2*x2   
          p(f2) = 2 + 2*x1   
          p(f3) = 2          
          p(f4) = 2          
          p(f5) = 2 + x1 + x3
          p(f6) = 2 + x3     
        
        Following rules are strictly oriented:
             f0(x1,0(),x3,x4,x5) = 2          
                                 > 0          
                                 = 0()        
        
           f0(x1,S(x),x3,0(),x5) = 2          
                                 > 0          
                                 = 0()        
        
             f1(x1,x2,x3,x4,0()) = 2 + 2*x2   
                                 > 0          
                                 = 0()        
        
             f2(x1,x2,0(),x4,x5) = 2 + 2*x1   
                                 > 0          
                                 = 0()        
        
          f2(x1,x2,S(x),0(),0()) = 2 + 2*x1   
                                 > 0          
                                 = 0()        
        
        f2(x1,x2,S(x'),S(x),0()) = 2 + 2*x1   
                                 > 0          
                                 = 0()        
        
             f3(x1,x2,x3,x4,0()) = 2          
                                 > 0          
                                 = 0()        
        
             f4(0(),x2,x3,x4,x5) = 2          
                                 > 0          
                                 = 0()        
        
          f4(S(x),0(),x3,x4,0()) = 2          
                                 > 0          
                                 = 0()        
        
        f4(S(x'),S(x),x3,x4,0()) = 2          
                                 > 0          
                                 = 0()        
        
             f5(x1,x2,x3,x4,0()) = 2 + x1 + x3
                                 > 0          
                                 = 0()        
        
             f6(x1,x2,x3,x4,0()) = 2 + x3     
                                 > 0          
                                 = 0()        
        
        
        Following rules are (at-least) weakly oriented:
            f0(x1,S(x'),x3,S(x),x5) =  2                       
                                    >= 2                       
                                    =  f1(x',S(x'),x,S(x),S(x))
        
               f1(x1,x2,x3,x4,S(x)) =  2 + 2*x2                
                                    >= 2 + 2*x2                
                                    =  f2(x2,x1,x3,x4,x)       
        
           f2(x1,x2,S(x'),0(),S(x)) =  2 + 2*x1                
                                    >= 2                       
                                    =  f3(x1,x2,x',0(),x)      
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  2 + 2*x1                
                                    >= 2 + x1                  
                                    =  f5(x1,x2,S(x''),x',x)   
        
               f3(x1,x2,x3,x4,S(x)) =  2                       
                                    >= 2                       
                                    =  f4(x1,x2,x4,x3,x)       
        
           f4(S(x'),0(),x3,x4,S(x)) =  2                       
                                    >= 2                       
                                    =  f3(x',0(),x3,x4,x)      
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  2                       
                                    >= 2                       
                                    =  f2(S(x''),x',x3,x4,x)   
        
               f5(x1,x2,x3,x4,S(x)) =  2 + x1 + x3             
                                    >= 2 + x3                  
                                    =  f6(x2,x1,x3,x4,x)       
        
               f6(x1,x2,x3,x4,S(x)) =  2 + x3                  
                                    >= 2                       
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 3: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f1(x1,x2,x3,x4,0()) -> 0()
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0          
           p(S) = 4 + x1     
          p(f0) = 2*x4       
          p(f1) = 2*x3       
          p(f2) = 2*x3       
          p(f3) = 2*x3 + 2*x4
          p(f4) = 2*x3 + 2*x4
          p(f5) = 2*x3       
          p(f6) = 2*x3       
        
        Following rules are strictly oriented:
         f0(x1,S(x'),x3,S(x),x5) = 8 + 2*x                 
                                 > 2*x                     
                                 = f1(x',S(x'),x,S(x),S(x))
        
        f2(x1,x2,S(x'),0(),S(x)) = 8 + 2*x'                
                                 > 2*x'                    
                                 = f3(x1,x2,x',0(),x)      
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  2*x4                 
                                    >= 0                    
                                    =  0()                  
        
              f0(x1,S(x),x3,0(),x5) =  0                    
                                    >= 0                    
                                    =  0()                  
        
                f1(x1,x2,x3,x4,0()) =  2*x3                 
                                    >= 0                    
                                    =  0()                  
        
               f1(x1,x2,x3,x4,S(x)) =  2*x3                 
                                    >= 2*x3                 
                                    =  f2(x2,x1,x3,x4,x)    
        
                f2(x1,x2,0(),x4,x5) =  0                    
                                    >= 0                    
                                    =  0()                  
        
             f2(x1,x2,S(x),0(),0()) =  8 + 2*x              
                                    >= 0                    
                                    =  0()                  
        
           f2(x1,x2,S(x'),S(x),0()) =  8 + 2*x'             
                                    >= 0                    
                                    =  0()                  
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  8 + 2*x''            
                                    >= 8 + 2*x''            
                                    =  f5(x1,x2,S(x''),x',x)
        
                f3(x1,x2,x3,x4,0()) =  2*x3 + 2*x4          
                                    >= 0                    
                                    =  0()                  
        
               f3(x1,x2,x3,x4,S(x)) =  2*x3 + 2*x4          
                                    >= 2*x3 + 2*x4          
                                    =  f4(x1,x2,x4,x3,x)    
        
                f4(0(),x2,x3,x4,x5) =  2*x3 + 2*x4          
                                    >= 0                    
                                    =  0()                  
        
             f4(S(x),0(),x3,x4,0()) =  2*x3 + 2*x4          
                                    >= 0                    
                                    =  0()                  
        
           f4(S(x'),0(),x3,x4,S(x)) =  2*x3 + 2*x4          
                                    >= 2*x3 + 2*x4          
                                    =  f3(x',0(),x3,x4,x)   
        
           f4(S(x'),S(x),x3,x4,0()) =  2*x3 + 2*x4          
                                    >= 0                    
                                    =  0()                  
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  2*x3 + 2*x4          
                                    >= 2*x3                 
                                    =  f2(S(x''),x',x3,x4,x)
        
                f5(x1,x2,x3,x4,0()) =  2*x3                 
                                    >= 0                    
                                    =  0()                  
        
               f5(x1,x2,x3,x4,S(x)) =  2*x3                 
                                    >= 2*x3                 
                                    =  f6(x2,x1,x3,x4,x)    
        
                f6(x1,x2,x3,x4,0()) =  2*x3                 
                                    >= 0                    
                                    =  0()                  
        
               f6(x1,x2,x3,x4,S(x)) =  2*x3                 
                                    >= 2*x3                 
                                    =  f0(x1,x2,x4,x3,x)    
        
* Step 4: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 2       
           p(S) = 4 + x1  
          p(f0) = 3 + 2*x2
          p(f1) = 3 + 2*x2
          p(f2) = 3 + 2*x1
          p(f3) = 3 + 2*x1
          p(f4) = 3 + 2*x1
          p(f5) = 3 + 2*x1
          p(f6) = 3 + 2*x2
        
        Following rules are strictly oriented:
        f4(S(x'),0(),x3,x4,S(x)) = 11 + 2*x'         
                                 > 3 + 2*x'          
                                 = f3(x',0(),x3,x4,x)
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  7                       
                                    >= 2                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  11 + 2*x                
                                    >= 2                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  11 + 2*x'               
                                    >= 11 + 2*x'               
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  3 + 2*x2                
                                    >= 2                       
                                    =  0()                     
        
               f1(x1,x2,x3,x4,S(x)) =  3 + 2*x2                
                                    >= 3 + 2*x2                
                                    =  f2(x2,x1,x3,x4,x)       
        
                f2(x1,x2,0(),x4,x5) =  3 + 2*x1                
                                    >= 2                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  3 + 2*x1                
                                    >= 2                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  3 + 2*x1                
                                    >= 3 + 2*x1                
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  3 + 2*x1                
                                    >= 2                       
                                    =  0()                     
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  3 + 2*x1                
                                    >= 3 + 2*x1                
                                    =  f5(x1,x2,S(x''),x',x)   
        
                f3(x1,x2,x3,x4,0()) =  3 + 2*x1                
                                    >= 2                       
                                    =  0()                     
        
               f3(x1,x2,x3,x4,S(x)) =  3 + 2*x1                
                                    >= 3 + 2*x1                
                                    =  f4(x1,x2,x4,x3,x)       
        
                f4(0(),x2,x3,x4,x5) =  7                       
                                    >= 2                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  11 + 2*x                
                                    >= 2                       
                                    =  0()                     
        
           f4(S(x'),S(x),x3,x4,0()) =  11 + 2*x'               
                                    >= 2                       
                                    =  0()                     
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  11 + 2*x''              
                                    >= 11 + 2*x''              
                                    =  f2(S(x''),x',x3,x4,x)   
        
                f5(x1,x2,x3,x4,0()) =  3 + 2*x1                
                                    >= 2                       
                                    =  0()                     
        
               f5(x1,x2,x3,x4,S(x)) =  3 + 2*x1                
                                    >= 3 + 2*x1                
                                    =  f6(x2,x1,x3,x4,x)       
        
                f6(x1,x2,x3,x4,0()) =  3 + 2*x2                
                                    >= 2                       
                                    =  0()                     
        
               f6(x1,x2,x3,x4,S(x)) =  3 + 2*x2                
                                    >= 3 + 2*x2                
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 5: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0          
           p(S) = 1 + x1     
          p(f0) = 4*x4       
          p(f1) = 4 + 4*x3   
          p(f2) = 4*x3       
          p(f3) = 4*x3 + 4*x4
          p(f4) = 4*x3 + 4*x4
          p(f5) = 4*x3       
          p(f6) = 4*x3       
        
        Following rules are strictly oriented:
        f1(x1,x2,x3,x4,S(x)) = 4 + 4*x3         
                             > 4*x3             
                             = f2(x2,x1,x3,x4,x)
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  4*x4                    
                                    >= 0                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  0                       
                                    >= 0                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  4 + 4*x                 
                                    >= 4 + 4*x                 
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  4 + 4*x3                
                                    >= 0                       
                                    =  0()                     
        
                f2(x1,x2,0(),x4,x5) =  0                       
                                    >= 0                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  4 + 4*x                 
                                    >= 0                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  4 + 4*x'                
                                    >= 4*x'                    
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  4 + 4*x'                
                                    >= 0                       
                                    =  0()                     
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  4 + 4*x''               
                                    >= 4 + 4*x''               
                                    =  f5(x1,x2,S(x''),x',x)   
        
                f3(x1,x2,x3,x4,0()) =  4*x3 + 4*x4             
                                    >= 0                       
                                    =  0()                     
        
               f3(x1,x2,x3,x4,S(x)) =  4*x3 + 4*x4             
                                    >= 4*x3 + 4*x4             
                                    =  f4(x1,x2,x4,x3,x)       
        
                f4(0(),x2,x3,x4,x5) =  4*x3 + 4*x4             
                                    >= 0                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  4*x3 + 4*x4             
                                    >= 0                       
                                    =  0()                     
        
           f4(S(x'),0(),x3,x4,S(x)) =  4*x3 + 4*x4             
                                    >= 4*x3 + 4*x4             
                                    =  f3(x',0(),x3,x4,x)      
        
           f4(S(x'),S(x),x3,x4,0()) =  4*x3 + 4*x4             
                                    >= 0                       
                                    =  0()                     
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  4*x3 + 4*x4             
                                    >= 4*x3                    
                                    =  f2(S(x''),x',x3,x4,x)   
        
                f5(x1,x2,x3,x4,0()) =  4*x3                    
                                    >= 0                       
                                    =  0()                     
        
               f5(x1,x2,x3,x4,S(x)) =  4*x3                    
                                    >= 4*x3                    
                                    =  f6(x2,x1,x3,x4,x)       
        
                f6(x1,x2,x3,x4,0()) =  4*x3                    
                                    >= 0                       
                                    =  0()                     
        
               f6(x1,x2,x3,x4,S(x)) =  4*x3                    
                                    >= 4*x3                    
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 6: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0              
           p(S) = 2 + x1         
          p(f0) = 4*x4           
          p(f1) = 4*x3           
          p(f2) = 4*x3           
          p(f3) = 6 + 4*x3 + 4*x4
          p(f4) = 6 + 4*x3 + 4*x4
          p(f5) = 4*x3           
          p(f6) = 4*x3           
        
        Following rules are strictly oriented:
        f4(S(x''),S(x'),x3,x4,S(x)) = 6 + 4*x3 + 4*x4      
                                    > 4*x3                 
                                    = f2(S(x''),x',x3,x4,x)
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  4*x4                    
                                    >= 0                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  0                       
                                    >= 0                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  8 + 4*x                 
                                    >= 4*x                     
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  4*x3                    
                                    >= 0                       
                                    =  0()                     
        
               f1(x1,x2,x3,x4,S(x)) =  4*x3                    
                                    >= 4*x3                    
                                    =  f2(x2,x1,x3,x4,x)       
        
                f2(x1,x2,0(),x4,x5) =  0                       
                                    >= 0                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  8 + 4*x                 
                                    >= 0                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  8 + 4*x'                
                                    >= 6 + 4*x'                
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  8 + 4*x'                
                                    >= 0                       
                                    =  0()                     
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  8 + 4*x''               
                                    >= 8 + 4*x''               
                                    =  f5(x1,x2,S(x''),x',x)   
        
                f3(x1,x2,x3,x4,0()) =  6 + 4*x3 + 4*x4         
                                    >= 0                       
                                    =  0()                     
        
               f3(x1,x2,x3,x4,S(x)) =  6 + 4*x3 + 4*x4         
                                    >= 6 + 4*x3 + 4*x4         
                                    =  f4(x1,x2,x4,x3,x)       
        
                f4(0(),x2,x3,x4,x5) =  6 + 4*x3 + 4*x4         
                                    >= 0                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  6 + 4*x3 + 4*x4         
                                    >= 0                       
                                    =  0()                     
        
           f4(S(x'),0(),x3,x4,S(x)) =  6 + 4*x3 + 4*x4         
                                    >= 6 + 4*x3 + 4*x4         
                                    =  f3(x',0(),x3,x4,x)      
        
           f4(S(x'),S(x),x3,x4,0()) =  6 + 4*x3 + 4*x4         
                                    >= 0                       
                                    =  0()                     
        
                f5(x1,x2,x3,x4,0()) =  4*x3                    
                                    >= 0                       
                                    =  0()                     
        
               f5(x1,x2,x3,x4,S(x)) =  4*x3                    
                                    >= 4*x3                    
                                    =  f6(x2,x1,x3,x4,x)       
        
                f6(x1,x2,x3,x4,0()) =  4*x3                    
                                    >= 0                       
                                    =  0()                     
        
               f6(x1,x2,x3,x4,S(x)) =  4*x3                    
                                    >= 4*x3                    
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 7: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 2              
           p(S) = 2 + x1         
          p(f0) = 2 + 4*x4       
          p(f1) = 4 + 4*x3       
          p(f2) = 3 + 4*x3       
          p(f3) = 3 + 4*x3 + 4*x4
          p(f4) = 3 + 4*x3 + 4*x4
          p(f5) = 2 + 4*x3       
          p(f6) = 2 + 4*x3       
        
        Following rules are strictly oriented:
        f2(x1,x2,S(x''),S(x'),S(x)) = 11 + 4*x''           
                                    > 10 + 4*x''           
                                    = f5(x1,x2,S(x''),x',x)
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  2 + 4*x4                
                                    >= 2                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  10                      
                                    >= 2                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  10 + 4*x                
                                    >= 4 + 4*x                 
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  4 + 4*x3                
                                    >= 2                       
                                    =  0()                     
        
               f1(x1,x2,x3,x4,S(x)) =  4 + 4*x3                
                                    >= 3 + 4*x3                
                                    =  f2(x2,x1,x3,x4,x)       
        
                f2(x1,x2,0(),x4,x5) =  11                      
                                    >= 2                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  11 + 4*x                
                                    >= 2                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  11 + 4*x'               
                                    >= 11 + 4*x'               
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  11 + 4*x'               
                                    >= 2                       
                                    =  0()                     
        
                f3(x1,x2,x3,x4,0()) =  3 + 4*x3 + 4*x4         
                                    >= 2                       
                                    =  0()                     
        
               f3(x1,x2,x3,x4,S(x)) =  3 + 4*x3 + 4*x4         
                                    >= 3 + 4*x3 + 4*x4         
                                    =  f4(x1,x2,x4,x3,x)       
        
                f4(0(),x2,x3,x4,x5) =  3 + 4*x3 + 4*x4         
                                    >= 2                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  3 + 4*x3 + 4*x4         
                                    >= 2                       
                                    =  0()                     
        
           f4(S(x'),0(),x3,x4,S(x)) =  3 + 4*x3 + 4*x4         
                                    >= 3 + 4*x3 + 4*x4         
                                    =  f3(x',0(),x3,x4,x)      
        
           f4(S(x'),S(x),x3,x4,0()) =  3 + 4*x3 + 4*x4         
                                    >= 2                       
                                    =  0()                     
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  3 + 4*x3 + 4*x4         
                                    >= 3 + 4*x3                
                                    =  f2(S(x''),x',x3,x4,x)   
        
                f5(x1,x2,x3,x4,0()) =  2 + 4*x3                
                                    >= 2                       
                                    =  0()                     
        
               f5(x1,x2,x3,x4,S(x)) =  2 + 4*x3                
                                    >= 2 + 4*x3                
                                    =  f6(x2,x1,x3,x4,x)       
        
                f6(x1,x2,x3,x4,0()) =  2 + 4*x3                
                                    >= 2                       
                                    =  0()                     
        
               f6(x1,x2,x3,x4,S(x)) =  2 + 4*x3                
                                    >= 2 + 4*x3                
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 8: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0                     
           p(S) = 1 + x1                
          p(f0) = 4*x2 + 4*x4           
          p(f1) = 4*x2 + 4*x3           
          p(f2) = 4*x1 + 4*x3           
          p(f3) = 4 + 4*x1 + 4*x3 + 4*x4
          p(f4) = 4*x1 + 4*x3 + 4*x4    
          p(f5) = 4*x1 + 4*x3           
          p(f6) = 4*x2 + 4*x3           
        
        Following rules are strictly oriented:
        f3(x1,x2,x3,x4,S(x)) = 4 + 4*x1 + 4*x3 + 4*x4
                             > 4*x1 + 4*x3 + 4*x4    
                             = f4(x1,x2,x4,x3,x)     
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  4*x4                    
                                    >= 0                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  4 + 4*x                 
                                    >= 0                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  8 + 4*x + 4*x'          
                                    >= 4 + 4*x + 4*x'          
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  4*x2 + 4*x3             
                                    >= 0                       
                                    =  0()                     
        
               f1(x1,x2,x3,x4,S(x)) =  4*x2 + 4*x3             
                                    >= 4*x2 + 4*x3             
                                    =  f2(x2,x1,x3,x4,x)       
        
                f2(x1,x2,0(),x4,x5) =  4*x1                    
                                    >= 0                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  4 + 4*x + 4*x1          
                                    >= 0                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  4 + 4*x' + 4*x1         
                                    >= 4 + 4*x' + 4*x1         
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  4 + 4*x' + 4*x1         
                                    >= 0                       
                                    =  0()                     
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  4 + 4*x'' + 4*x1        
                                    >= 4 + 4*x'' + 4*x1        
                                    =  f5(x1,x2,S(x''),x',x)   
        
                f3(x1,x2,x3,x4,0()) =  4 + 4*x1 + 4*x3 + 4*x4  
                                    >= 0                       
                                    =  0()                     
        
                f4(0(),x2,x3,x4,x5) =  4*x3 + 4*x4             
                                    >= 0                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  4 + 4*x + 4*x3 + 4*x4   
                                    >= 0                       
                                    =  0()                     
        
           f4(S(x'),0(),x3,x4,S(x)) =  4 + 4*x' + 4*x3 + 4*x4  
                                    >= 4 + 4*x' + 4*x3 + 4*x4  
                                    =  f3(x',0(),x3,x4,x)      
        
           f4(S(x'),S(x),x3,x4,0()) =  4 + 4*x' + 4*x3 + 4*x4  
                                    >= 0                       
                                    =  0()                     
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  4 + 4*x'' + 4*x3 + 4*x4 
                                    >= 4 + 4*x'' + 4*x3        
                                    =  f2(S(x''),x',x3,x4,x)   
        
                f5(x1,x2,x3,x4,0()) =  4*x1 + 4*x3             
                                    >= 0                       
                                    =  0()                     
        
               f5(x1,x2,x3,x4,S(x)) =  4*x1 + 4*x3             
                                    >= 4*x1 + 4*x3             
                                    =  f6(x2,x1,x3,x4,x)       
        
                f6(x1,x2,x3,x4,0()) =  4*x2 + 4*x3             
                                    >= 0                       
                                    =  0()                     
        
               f6(x1,x2,x3,x4,S(x)) =  4*x2 + 4*x3             
                                    >= 4*x2 + 4*x3             
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 9: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0          
           p(S) = 1 + x1     
          p(f0) = 3 + x4     
          p(f1) = 4 + x3     
          p(f2) = 4 + x3     
          p(f3) = 4 + x3 + x4
          p(f4) = 4 + x3 + x4
          p(f5) = 4 + x3     
          p(f6) = 4 + x3     
        
        Following rules are strictly oriented:
        f6(x1,x2,x3,x4,S(x)) = 4 + x3           
                             > 3 + x3           
                             = f0(x1,x2,x4,x3,x)
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  3 + x4                  
                                    >= 0                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  3                       
                                    >= 0                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  4 + x                   
                                    >= 4 + x                   
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  4 + x3                  
                                    >= 0                       
                                    =  0()                     
        
               f1(x1,x2,x3,x4,S(x)) =  4 + x3                  
                                    >= 4 + x3                  
                                    =  f2(x2,x1,x3,x4,x)       
        
                f2(x1,x2,0(),x4,x5) =  4                       
                                    >= 0                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  5 + x                   
                                    >= 0                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  5 + x'                  
                                    >= 4 + x'                  
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  5 + x'                  
                                    >= 0                       
                                    =  0()                     
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  5 + x''                 
                                    >= 5 + x''                 
                                    =  f5(x1,x2,S(x''),x',x)   
        
                f3(x1,x2,x3,x4,0()) =  4 + x3 + x4             
                                    >= 0                       
                                    =  0()                     
        
               f3(x1,x2,x3,x4,S(x)) =  4 + x3 + x4             
                                    >= 4 + x3 + x4             
                                    =  f4(x1,x2,x4,x3,x)       
        
                f4(0(),x2,x3,x4,x5) =  4 + x3 + x4             
                                    >= 0                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  4 + x3 + x4             
                                    >= 0                       
                                    =  0()                     
        
           f4(S(x'),0(),x3,x4,S(x)) =  4 + x3 + x4             
                                    >= 4 + x3 + x4             
                                    =  f3(x',0(),x3,x4,x)      
        
           f4(S(x'),S(x),x3,x4,0()) =  4 + x3 + x4             
                                    >= 0                       
                                    =  0()                     
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  4 + x3 + x4             
                                    >= 4 + x3                  
                                    =  f2(S(x''),x',x3,x4,x)   
        
                f5(x1,x2,x3,x4,0()) =  4 + x3                  
                                    >= 0                       
                                    =  0()                     
        
               f5(x1,x2,x3,x4,S(x)) =  4 + x3                  
                                    >= 4 + x3                  
                                    =  f6(x2,x1,x3,x4,x)       
        
                f6(x1,x2,x3,x4,0()) =  4 + x3                  
                                    >= 0                       
                                    =  0()                     
        
* Step 10: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          none
        
        Following symbols are considered usable:
          {f0,f1,f2,f3,f4,f5,f6}
        TcT has computed the following interpretation:
           p(0) = 0              
           p(S) = 2 + x1         
          p(f0) = 2*x4           
          p(f1) = 1 + 2*x3       
          p(f2) = 1 + 2*x3       
          p(f3) = 4 + 2*x3 + 2*x4
          p(f4) = 4 + 2*x3 + 2*x4
          p(f5) = 1 + 2*x3       
          p(f6) = 2*x3           
        
        Following rules are strictly oriented:
        f5(x1,x2,x3,x4,S(x)) = 1 + 2*x3         
                             > 2*x3             
                             = f6(x2,x1,x3,x4,x)
        
        
        Following rules are (at-least) weakly oriented:
                f0(x1,0(),x3,x4,x5) =  2*x4                    
                                    >= 0                       
                                    =  0()                     
        
              f0(x1,S(x),x3,0(),x5) =  0                       
                                    >= 0                       
                                    =  0()                     
        
            f0(x1,S(x'),x3,S(x),x5) =  4 + 2*x                 
                                    >= 1 + 2*x                 
                                    =  f1(x',S(x'),x,S(x),S(x))
        
                f1(x1,x2,x3,x4,0()) =  1 + 2*x3                
                                    >= 0                       
                                    =  0()                     
        
               f1(x1,x2,x3,x4,S(x)) =  1 + 2*x3                
                                    >= 1 + 2*x3                
                                    =  f2(x2,x1,x3,x4,x)       
        
                f2(x1,x2,0(),x4,x5) =  1                       
                                    >= 0                       
                                    =  0()                     
        
             f2(x1,x2,S(x),0(),0()) =  5 + 2*x                 
                                    >= 0                       
                                    =  0()                     
        
           f2(x1,x2,S(x'),0(),S(x)) =  5 + 2*x'                
                                    >= 4 + 2*x'                
                                    =  f3(x1,x2,x',0(),x)      
        
           f2(x1,x2,S(x'),S(x),0()) =  5 + 2*x'                
                                    >= 0                       
                                    =  0()                     
        
        f2(x1,x2,S(x''),S(x'),S(x)) =  5 + 2*x''               
                                    >= 5 + 2*x''               
                                    =  f5(x1,x2,S(x''),x',x)   
        
                f3(x1,x2,x3,x4,0()) =  4 + 2*x3 + 2*x4         
                                    >= 0                       
                                    =  0()                     
        
               f3(x1,x2,x3,x4,S(x)) =  4 + 2*x3 + 2*x4         
                                    >= 4 + 2*x3 + 2*x4         
                                    =  f4(x1,x2,x4,x3,x)       
        
                f4(0(),x2,x3,x4,x5) =  4 + 2*x3 + 2*x4         
                                    >= 0                       
                                    =  0()                     
        
             f4(S(x),0(),x3,x4,0()) =  4 + 2*x3 + 2*x4         
                                    >= 0                       
                                    =  0()                     
        
           f4(S(x'),0(),x3,x4,S(x)) =  4 + 2*x3 + 2*x4         
                                    >= 4 + 2*x3 + 2*x4         
                                    =  f3(x',0(),x3,x4,x)      
        
           f4(S(x'),S(x),x3,x4,0()) =  4 + 2*x3 + 2*x4         
                                    >= 0                       
                                    =  0()                     
        
        f4(S(x''),S(x'),x3,x4,S(x)) =  4 + 2*x3 + 2*x4         
                                    >= 1 + 2*x3                
                                    =  f2(S(x''),x',x3,x4,x)   
        
                f5(x1,x2,x3,x4,0()) =  1 + 2*x3                
                                    >= 0                       
                                    =  0()                     
        
                f6(x1,x2,x3,x4,0()) =  2*x3                    
                                    >= 0                       
                                    =  0()                     
        
               f6(x1,x2,x3,x4,S(x)) =  2*x3                    
                                    >= 2*x3                    
                                    =  f0(x1,x2,x4,x3,x)       
        
* Step 11: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))