WORST_CASE(Omega(n^1),O(n^2))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          prefix(y,u){y -> Cons(x,y),u -> Cons(z,u)} =
            prefix(Cons(x,y),Cons(z,u)) ->^+ and(!EQ(x,z),prefix(y,u))
              = C[prefix(y,u) = prefix(y,u){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                             ,prefix#(patcs,Cons(x,xs)))
          domatch#(Cons(x,xs),Nil(),n) -> c_2()
          domatch#(Nil(),Nil(),n) -> c_3()
          eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
          eqNatList#(Cons(x,xs),Nil()) -> c_5()
          eqNatList#(Nil(),Cons(y,ys)) -> c_6()
          eqNatList#(Nil(),Nil()) -> c_7()
          notEmpty#(Cons(x,xs)) -> c_8()
          notEmpty#(Nil()) -> c_9()
          prefix#(Cons(x,xs),Nil()) -> c_10()
          prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
          prefix#(Nil(),cs) -> c_12()
          strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
        Weak DPs
          !EQ#(0(),0()) -> c_14()
          !EQ#(0(),S(y)) -> c_15()
          !EQ#(S(x),0()) -> c_16()
          !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y))
          and#(False(),False()) -> c_18()
          and#(False(),True()) -> c_19()
          and#(True(),False()) -> c_20()
          and#(True(),True()) -> c_21()
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24()
          eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        
        and mark the set of starting terms.
** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            notEmpty#(Cons(x,xs)) -> c_8()
            notEmpty#(Nil()) -> c_9()
            prefix#(Cons(x,xs),Nil()) -> c_10()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
            prefix#(Nil(),cs) -> c_12()
            strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
        - Weak DPs:
            !EQ#(0(),0()) -> c_14()
            !EQ#(0(),S(y)) -> c_15()
            !EQ#(S(x),0()) -> c_16()
            !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y))
            and#(False(),False()) -> c_18()
            and#(False(),True()) -> c_19()
            and#(True(),False()) -> c_20()
            and#(True(),True()) -> c_21()
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24()
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/3,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {8,9,10,12}
        by application of
          Pre({8,9,10,12}) = {1,11}.
        Here rules are labelled as follows:
          1: domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                ,prefix#(patcs,Cons(x,xs)))
          2: domatch#(Cons(x,xs),Nil(),n) -> c_2()
          3: domatch#(Nil(),Nil(),n) -> c_3()
          4: eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
          5: eqNatList#(Cons(x,xs),Nil()) -> c_5()
          6: eqNatList#(Nil(),Cons(y,ys)) -> c_6()
          7: eqNatList#(Nil(),Nil()) -> c_7()
          8: notEmpty#(Cons(x,xs)) -> c_8()
          9: notEmpty#(Nil()) -> c_9()
          10: prefix#(Cons(x,xs),Nil()) -> c_10()
          11: prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
          12: prefix#(Nil(),cs) -> c_12()
          13: strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
          14: !EQ#(0(),0()) -> c_14()
          15: !EQ#(0(),S(y)) -> c_15()
          16: !EQ#(S(x),0()) -> c_16()
          17: !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y))
          18: and#(False(),False()) -> c_18()
          19: and#(False(),True()) -> c_19()
          20: and#(True(),False()) -> c_20()
          21: and#(True(),True()) -> c_21()
          22: domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          23: domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          24: eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24()
          25: eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
            strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
        - Weak DPs:
            !EQ#(0(),0()) -> c_14()
            !EQ#(0(),S(y)) -> c_15()
            !EQ#(S(x),0()) -> c_16()
            !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y))
            and#(False(),False()) -> c_18()
            and#(False(),True()) -> c_19()
            and#(True(),False()) -> c_20()
            and#(True(),True()) -> c_21()
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24()
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
            notEmpty#(Cons(x,xs)) -> c_8()
            notEmpty#(Nil()) -> c_9()
            prefix#(Cons(x,xs),Nil()) -> c_10()
            prefix#(Nil(),cs) -> c_12()
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/3,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                 ,prefix#(patcs,Cons(x,xs)))
             -->_1 domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):19
             -->_1 domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):18
             -->_2 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs)):8
             -->_2 prefix#(Nil(),cs) -> c_12():25
          
          2:S:domatch#(Cons(x,xs),Nil(),n) -> c_2()
             
          
          3:S:domatch#(Nil(),Nil(),n) -> c_3()
             
          
          4:S:eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
             -->_1 eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys)):21
             -->_2 !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y)):13
             -->_1 eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24():20
             -->_2 !EQ#(S(x),0()) -> c_16():12
             -->_2 !EQ#(0(),S(y)) -> c_15():11
             -->_2 !EQ#(0(),0()) -> c_14():10
          
          5:S:eqNatList#(Cons(x,xs),Nil()) -> c_5()
             
          
          6:S:eqNatList#(Nil(),Cons(y,ys)) -> c_6()
             
          
          7:S:eqNatList#(Nil(),Nil()) -> c_7()
             
          
          8:S:prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
             -->_2 !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y)):13
             -->_3 prefix#(Nil(),cs) -> c_12():25
             -->_3 prefix#(Cons(x,xs),Nil()) -> c_10():24
             -->_1 and#(True(),True()) -> c_21():17
             -->_1 and#(True(),False()) -> c_20():16
             -->_1 and#(False(),True()) -> c_19():15
             -->_1 and#(False(),False()) -> c_18():14
             -->_2 !EQ#(S(x),0()) -> c_16():12
             -->_2 !EQ#(0(),S(y)) -> c_15():11
             -->_2 !EQ#(0(),0()) -> c_14():10
             -->_3 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs)):8
          
          9:S:strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          10:W:!EQ#(0(),0()) -> c_14()
             
          
          11:W:!EQ#(0(),S(y)) -> c_15()
             
          
          12:W:!EQ#(S(x),0()) -> c_16()
             
          
          13:W:!EQ#(S(x),S(y)) -> c_17(!EQ#(x,y))
             -->_1 !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y)):13
             -->_1 !EQ#(S(x),0()) -> c_16():12
             -->_1 !EQ#(0(),S(y)) -> c_15():11
             -->_1 !EQ#(0(),0()) -> c_14():10
          
          14:W:and#(False(),False()) -> c_18()
             
          
          15:W:and#(False(),True()) -> c_19()
             
          
          16:W:and#(True(),False()) -> c_20()
             
          
          17:W:and#(True(),True()) -> c_21()
             
          
          18:W:domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          19:W:domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          20:W:eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24()
             
          
          21:W:eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
             -->_1 eqNatList#(Nil(),Nil()) -> c_7():7
             -->_1 eqNatList#(Nil(),Cons(y,ys)) -> c_6():6
             -->_1 eqNatList#(Cons(x,xs),Nil()) -> c_5():5
             -->_1 eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y)):4
          
          22:W:notEmpty#(Cons(x,xs)) -> c_8()
             
          
          23:W:notEmpty#(Nil()) -> c_9()
             
          
          24:W:prefix#(Cons(x,xs),Nil()) -> c_10()
             
          
          25:W:prefix#(Nil(),cs) -> c_12()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          23: notEmpty#(Nil()) -> c_9()
          22: notEmpty#(Cons(x,xs)) -> c_8()
          20: eqNatList[Ite]#(False(),y,ys,x,xs) -> c_24()
          14: and#(False(),False()) -> c_18()
          15: and#(False(),True()) -> c_19()
          16: and#(True(),False()) -> c_20()
          17: and#(True(),True()) -> c_21()
          24: prefix#(Cons(x,xs),Nil()) -> c_10()
          25: prefix#(Nil(),cs) -> c_12()
          13: !EQ#(S(x),S(y)) -> c_17(!EQ#(x,y))
          10: !EQ#(0(),0()) -> c_14()
          11: !EQ#(0(),S(y)) -> c_15()
          12: !EQ#(S(x),0()) -> c_16()
** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
            strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
        - Weak DPs:
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/3,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                 ,prefix#(patcs,Cons(x,xs)))
             -->_1 domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):19
             -->_1 domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):18
             -->_2 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs)):8
          
          2:S:domatch#(Cons(x,xs),Nil(),n) -> c_2()
             
          
          3:S:domatch#(Nil(),Nil(),n) -> c_3()
             
          
          4:S:eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y))
             -->_1 eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys)):21
          
          5:S:eqNatList#(Cons(x,xs),Nil()) -> c_5()
             
          
          6:S:eqNatList#(Nil(),Cons(y,ys)) -> c_6()
             
          
          7:S:eqNatList#(Nil(),Nil()) -> c_7()
             
          
          8:S:prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs)),!EQ#(x',x),prefix#(xs',xs))
             -->_3 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(and#(!EQ(x',x),prefix(xs',xs))
                                                           ,!EQ#(x',x)
                                                           ,prefix#(xs',xs)):8
          
          9:S:strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          18:W:domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          19:W:domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          21:W:eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
             -->_1 eqNatList#(Nil(),Nil()) -> c_7():7
             -->_1 eqNatList#(Nil(),Cons(y,ys)) -> c_6():6
             -->_1 eqNatList#(Cons(x,xs),Nil()) -> c_5():5
             -->_1 eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs),!EQ#(x,y)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
          prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
** Step 1.b:5: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
            strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
        - Weak DPs:
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          !EQ(0(),0()) -> True()
          !EQ(0(),S(y)) -> False()
          !EQ(S(x),0()) -> False()
          !EQ(S(x),S(y)) -> !EQ(x,y)
          and(False(),False()) -> False()
          and(False(),True()) -> False()
          and(True(),False()) -> False()
          and(True(),True()) -> True()
          prefix(Cons(x,xs),Nil()) -> False()
          prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
          prefix(Nil(),cs) -> True()
          domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                             ,prefix#(patcs,Cons(x,xs)))
          domatch#(Cons(x,xs),Nil(),n) -> c_2()
          domatch#(Nil(),Nil(),n) -> c_3()
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
          eqNatList#(Cons(x,xs),Nil()) -> c_5()
          eqNatList#(Nil(),Cons(y,ys)) -> c_6()
          eqNatList#(Nil(),Nil()) -> c_7()
          eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
          prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
          strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
** Step 1.b:6: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
            strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
        - Weak DPs:
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
           -->_1 domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):11
           -->_1 domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):10
           -->_2 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs)):8
        
        2:S:domatch#(Cons(x,xs),Nil(),n) -> c_2()
           
        
        3:S:domatch#(Nil(),Nil(),n) -> c_3()
           
        
        4:S:eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
           -->_1 eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys)):12
        
        5:S:eqNatList#(Cons(x,xs),Nil()) -> c_5()
           
        
        6:S:eqNatList#(Nil(),Cons(y,ys)) -> c_6()
           
        
        7:S:eqNatList#(Nil(),Nil()) -> c_7()
           
        
        8:S:prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
           -->_1 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs)):8
        
        9:S:strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil()))
           -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
           -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
           -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                    ,prefix#(patcs,Cons(x,xs))):1
        
        10:W:domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
           -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
           -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
           -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                    ,prefix#(patcs,Cons(x,xs))):1
        
        11:W:domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
           -->_1 domatch#(Nil(),Nil(),n) -> c_3():3
           -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():2
           -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                    ,prefix#(patcs,Cons(x,xs))):1
        
        12:W:eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
           -->_1 eqNatList#(Nil(),Nil()) -> c_7():7
           -->_1 eqNatList#(Nil(),Cons(y,ys)) -> c_6():6
           -->_1 eqNatList#(Cons(x,xs),Nil()) -> c_5():5
           -->_1 eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs)):4
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(9,strmatch#(patstr,str) -> c_13(domatch#(patstr,str,Nil())))]
** Step 1.b:7: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
        - Weak DPs:
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                             ,prefix#(patcs,Cons(x,xs)))
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
          eqNatList#(Cons(x,xs),Nil()) -> c_5()
          eqNatList#(Nil(),Cons(y,ys)) -> c_6()
          eqNatList#(Nil(),Nil()) -> c_7()
          eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        and a lower component
          domatch#(Cons(x,xs),Nil(),n) -> c_2()
          domatch#(Nil(),Nil(),n) -> c_3()
          prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
        Further, following extension rules are added to the lower component.
          domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
          domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs))
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
          domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
          eqNatList#(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs)
          eqNatList[Ite]#(True(),y,ys,x,xs) -> eqNatList#(xs,ys)
*** Step 1.b:7.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                               ,prefix#(patcs,Cons(x,xs)))
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
        - Weak DPs:
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                 ,prefix#(patcs,Cons(x,xs)))
             -->_1 domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):3
             -->_1 domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))):2
          
          2:S:domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          3:S:domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
             -->_1 domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
                                                      ,prefix#(patcs,Cons(x,xs))):1
          
          4:S:eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
             -->_1 eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys)):8
          
          5:S:eqNatList#(Cons(x,xs),Nil()) -> c_5()
             
          
          6:S:eqNatList#(Nil(),Cons(y,ys)) -> c_6()
             
          
          7:S:eqNatList#(Nil(),Nil()) -> c_7()
             
          
          8:W:eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
             -->_1 eqNatList#(Nil(),Nil()) -> c_7():7
             -->_1 eqNatList#(Nil(),Cons(y,ys)) -> c_6():6
             -->_1 eqNatList#(Cons(x,xs),Nil()) -> c_5():5
             -->_1 eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
*** Step 1.b:7.a:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
        - Weak DPs:
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(domatch[Ite]#) = {1},
            uargs(eqNatList[Ite]#) = {1},
            uargs(c_1) = {1},
            uargs(c_4) = {1},
            uargs(c_22) = {1},
            uargs(c_23) = {1},
            uargs(c_25) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                        p(!EQ) = [0]                  
                          p(0) = [0]                  
                       p(Cons) = [2]                  
                      p(False) = [0]                  
                        p(Nil) = [0]                  
                          p(S) = [1] x1 + [0]         
                       p(True) = [0]                  
                        p(and) = [1] x1 + [1] x2 + [0]
                    p(domatch) = [0]                  
               p(domatch[Ite]) = [0]                  
                  p(eqNatList) = [0]                  
             p(eqNatList[Ite]) = [0]                  
                   p(notEmpty) = [0]                  
                     p(prefix) = [5]                  
                   p(strmatch) = [0]                  
                       p(!EQ#) = [0]                  
                       p(and#) = [0]                  
                   p(domatch#) = [0]                  
              p(domatch[Ite]#) = [1] x1 + [1] x3 + [0]
                 p(eqNatList#) = [1]                  
            p(eqNatList[Ite]#) = [1] x1 + [2]         
                  p(notEmpty#) = [0]                  
                    p(prefix#) = [0]                  
                  p(strmatch#) = [0]                  
                        p(c_1) = [1] x1 + [0]         
                        p(c_2) = [0]                  
                        p(c_3) = [0]                  
                        p(c_4) = [1] x1 + [0]         
                        p(c_5) = [0]                  
                        p(c_6) = [0]                  
                        p(c_7) = [0]                  
                        p(c_8) = [0]                  
                        p(c_9) = [0]                  
                       p(c_10) = [0]                  
                       p(c_11) = [0]                  
                       p(c_12) = [0]                  
                       p(c_13) = [0]                  
                       p(c_14) = [0]                  
                       p(c_15) = [0]                  
                       p(c_16) = [0]                  
                       p(c_17) = [0]                  
                       p(c_18) = [0]                  
                       p(c_19) = [0]                  
                       p(c_20) = [0]                  
                       p(c_21) = [0]                  
                       p(c_22) = [1] x1 + [0]         
                       p(c_23) = [1] x1 + [0]         
                       p(c_24) = [0]                  
                       p(c_25) = [1] x1 + [1]         
          
          Following rules are strictly oriented:
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) = [2]                                               
                                                    > [0]                                               
                                                    = c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          
           domatch[Ite]#(True(),patcs,Cons(x,xs),n) = [2]                                               
                                                    > [0]                                               
                                                    = c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          
                       eqNatList#(Cons(x,xs),Nil()) = [1]                                               
                                                    > [0]                                               
                                                    = c_5()                                             
          
                       eqNatList#(Nil(),Cons(y,ys)) = [1]                                               
                                                    > [0]                                               
                                                    = c_6()                                             
          
                            eqNatList#(Nil(),Nil()) = [1]                                               
                                                    > [0]                                               
                                                    = c_7()                                             
          
          
          Following rules are (at-least) weakly oriented:
               domatch#(patcs,Cons(x,xs),n) =  [0]                                                            
                                            >= [7]                                                            
                                            =  c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
          
          eqNatList#(Cons(x,xs),Cons(y,ys)) =  [1]                                                            
                                            >= [2]                                                            
                                            =  c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))                       
          
          eqNatList[Ite]#(True(),y,ys,x,xs) =  [2]                                                            
                                            >= [2]                                                            
                                            =  c_25(eqNatList#(xs,ys))                                        
          
                               !EQ(0(),0()) =  [0]                                                            
                                            >= [0]                                                            
                                            =  True()                                                         
          
                              !EQ(0(),S(y)) =  [0]                                                            
                                            >= [0]                                                            
                                            =  False()                                                        
          
                              !EQ(S(x),0()) =  [0]                                                            
                                            >= [0]                                                            
                                            =  False()                                                        
          
                             !EQ(S(x),S(y)) =  [0]                                                            
                                            >= [0]                                                            
                                            =  !EQ(x,y)                                                       
          
                       and(False(),False()) =  [0]                                                            
                                            >= [0]                                                            
                                            =  False()                                                        
          
                        and(False(),True()) =  [0]                                                            
                                            >= [0]                                                            
                                            =  False()                                                        
          
                        and(True(),False()) =  [0]                                                            
                                            >= [0]                                                            
                                            =  False()                                                        
          
                         and(True(),True()) =  [0]                                                            
                                            >= [0]                                                            
                                            =  True()                                                         
          
                   prefix(Cons(x,xs),Nil()) =  [5]                                                            
                                            >= [0]                                                            
                                            =  False()                                                        
          
            prefix(Cons(x',xs'),Cons(x,xs)) =  [5]                                                            
                                            >= [5]                                                            
                                            =  and(!EQ(x',x),prefix(xs',xs))                                  
          
                           prefix(Nil(),cs) =  [5]                                                            
                                            >= [0]                                                            
                                            =  True()                                                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:7.a:3: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
        - Weak DPs:
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1},
          uargs(c_22) = {1},
          uargs(c_23) = {1},
          uargs(c_25) = {1}
        
        Following symbols are considered usable:
          {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#}
        TcT has computed the following interpretation:
                      p(!EQ) = 2              
                        p(0) = 0              
                     p(Cons) = 4 + x1 + x2    
                    p(False) = 0              
                      p(Nil) = 0              
                        p(S) = 0              
                     p(True) = 0              
                      p(and) = 2 + 2*x1 + 4*x2
                  p(domatch) = 2 + 2*x2 + x3  
             p(domatch[Ite]) = x2             
                p(eqNatList) = 1              
           p(eqNatList[Ite]) = x2             
                 p(notEmpty) = 4*x1           
                   p(prefix) = 1              
                 p(strmatch) = 4*x2           
                     p(!EQ#) = 1              
                     p(and#) = 1 + 4*x2       
                 p(domatch#) = 2              
            p(domatch[Ite]#) = 2              
               p(eqNatList#) = 3*x1           
          p(eqNatList[Ite]#) = 1 + 3*x5       
                p(notEmpty#) = 2 + 4*x1       
                  p(prefix#) = x1             
                p(strmatch#) = 1              
                      p(c_1) = x1             
                      p(c_2) = 1              
                      p(c_3) = 0              
                      p(c_4) = 6 + x1         
                      p(c_5) = 0              
                      p(c_6) = 0              
                      p(c_7) = 0              
                      p(c_8) = 0              
                      p(c_9) = 1              
                     p(c_10) = 0              
                     p(c_11) = 1 + x1         
                     p(c_12) = 0              
                     p(c_13) = 0              
                     p(c_14) = 1              
                     p(c_15) = 0              
                     p(c_16) = 0              
                     p(c_17) = 2              
                     p(c_18) = 1              
                     p(c_19) = 0              
                     p(c_20) = 0              
                     p(c_21) = 1              
                     p(c_22) = x1             
                     p(c_23) = x1             
                     p(c_24) = 0              
                     p(c_25) = x1             
        
        Following rules are strictly oriented:
        eqNatList#(Cons(x,xs),Cons(y,ys)) = 12 + 3*x + 3*xs                         
                                          > 7 + 3*xs                                
                                          = c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
        
        
        Following rules are (at-least) weakly oriented:
                     domatch#(patcs,Cons(x,xs),n) =  2                                                              
                                                  >= 2                                                              
                                                  =  c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
        
        domatch[Ite]#(False(),patcs,Cons(x,xs),n) =  2                                                              
                                                  >= 2                                                              
                                                  =  c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))             
        
         domatch[Ite]#(True(),patcs,Cons(x,xs),n) =  2                                                              
                                                  >= 2                                                              
                                                  =  c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))             
        
                     eqNatList#(Cons(x,xs),Nil()) =  12 + 3*x + 3*xs                                                
                                                  >= 0                                                              
                                                  =  c_5()                                                          
        
                     eqNatList#(Nil(),Cons(y,ys)) =  0                                                              
                                                  >= 0                                                              
                                                  =  c_6()                                                          
        
                          eqNatList#(Nil(),Nil()) =  0                                                              
                                                  >= 0                                                              
                                                  =  c_7()                                                          
        
                eqNatList[Ite]#(True(),y,ys,x,xs) =  1 + 3*xs                                                       
                                                  >= 3*xs                                                           
                                                  =  c_25(eqNatList#(xs,ys))                                        
        
*** Step 1.b:7.a:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
        - Weak DPs:
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(domatch[Ite]#) = {1},
            uargs(eqNatList[Ite]#) = {1},
            uargs(c_1) = {1},
            uargs(c_4) = {1},
            uargs(c_22) = {1},
            uargs(c_23) = {1},
            uargs(c_25) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                        p(!EQ) = [0]                           
                          p(0) = [0]                           
                       p(Cons) = [1] x2 + [2]                  
                      p(False) = [0]                           
                        p(Nil) = [4]                           
                          p(S) = [1] x1 + [0]                  
                       p(True) = [0]                           
                        p(and) = [1] x1 + [1] x2 + [0]         
                    p(domatch) = [0]                           
               p(domatch[Ite]) = [0]                           
                  p(eqNatList) = [1] x2 + [0]                  
             p(eqNatList[Ite]) = [1] x2 + [2] x4 + [2] x5 + [0]
                   p(notEmpty) = [2] x1 + [2]                  
                     p(prefix) = [0]                           
                   p(strmatch) = [4]                           
                       p(!EQ#) = [0]                           
                       p(and#) = [4] x1 + [4] x2 + [0]         
                   p(domatch#) = [1] x2 + [1]                  
              p(domatch[Ite]#) = [1] x1 + [1] x3 + [0]         
                 p(eqNatList#) = [1] x2 + [0]                  
            p(eqNatList[Ite]#) = [1] x1 + [1] x3 + [2]         
                  p(notEmpty#) = [4] x1 + [1]                  
                    p(prefix#) = [1] x1 + [1] x2 + [2]         
                  p(strmatch#) = [1] x1 + [2]                  
                        p(c_1) = [1] x1 + [0]                  
                        p(c_2) = [0]                           
                        p(c_3) = [1]                           
                        p(c_4) = [1] x1 + [0]                  
                        p(c_5) = [1]                           
                        p(c_6) = [2]                           
                        p(c_7) = [0]                           
                        p(c_8) = [1]                           
                        p(c_9) = [0]                           
                       p(c_10) = [1]                           
                       p(c_11) = [0]                           
                       p(c_12) = [1]                           
                       p(c_13) = [2]                           
                       p(c_14) = [0]                           
                       p(c_15) = [1]                           
                       p(c_16) = [0]                           
                       p(c_17) = [1] x1 + [0]                  
                       p(c_18) = [1]                           
                       p(c_19) = [0]                           
                       p(c_20) = [0]                           
                       p(c_21) = [1]                           
                       p(c_22) = [1] x1 + [0]                  
                       p(c_23) = [1] x1 + [1]                  
                       p(c_24) = [0]                           
                       p(c_25) = [1] x1 + [2]                  
          
          Following rules are strictly oriented:
          domatch#(patcs,Cons(x,xs),n) = [1] xs + [3]                                                   
                                       > [1] xs + [2]                                                   
                                       = c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
          
          
          Following rules are (at-least) weakly oriented:
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) =  [1] xs + [2]                                      
                                                    >= [1] xs + [1]                                      
                                                    =  c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          
           domatch[Ite]#(True(),patcs,Cons(x,xs),n) =  [1] xs + [2]                                      
                                                    >= [1] xs + [2]                                      
                                                    =  c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
          
                  eqNatList#(Cons(x,xs),Cons(y,ys)) =  [1] ys + [2]                                      
                                                    >= [1] ys + [2]                                      
                                                    =  c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))          
          
                       eqNatList#(Cons(x,xs),Nil()) =  [4]                                               
                                                    >= [1]                                               
                                                    =  c_5()                                             
          
                       eqNatList#(Nil(),Cons(y,ys)) =  [1] ys + [2]                                      
                                                    >= [2]                                               
                                                    =  c_6()                                             
          
                            eqNatList#(Nil(),Nil()) =  [4]                                               
                                                    >= [0]                                               
                                                    =  c_7()                                             
          
                  eqNatList[Ite]#(True(),y,ys,x,xs) =  [1] ys + [2]                                      
                                                    >= [1] ys + [2]                                      
                                                    =  c_25(eqNatList#(xs,ys))                           
          
                                       !EQ(0(),0()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  True()                                            
          
                                      !EQ(0(),S(y)) =  [0]                                               
                                                    >= [0]                                               
                                                    =  False()                                           
          
                                      !EQ(S(x),0()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  False()                                           
          
                                     !EQ(S(x),S(y)) =  [0]                                               
                                                    >= [0]                                               
                                                    =  !EQ(x,y)                                          
          
                               and(False(),False()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  False()                                           
          
                                and(False(),True()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  False()                                           
          
                                and(True(),False()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  False()                                           
          
                                 and(True(),True()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  True()                                            
          
                           prefix(Cons(x,xs),Nil()) =  [0]                                               
                                                    >= [0]                                               
                                                    =  False()                                           
          
                    prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                               
                                                    >= [0]                                               
                                                    =  and(!EQ(x',x),prefix(xs',xs))                     
          
                                   prefix(Nil(),cs) =  [0]                                               
                                                    >= [0]                                               
                                                    =  True()                                            
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:7.a:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            domatch#(patcs,Cons(x,xs),n) -> c_1(domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n))
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> c_22(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> c_23(domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_4(eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs))
            eqNatList#(Cons(x,xs),Nil()) -> c_5()
            eqNatList#(Nil(),Cons(y,ys)) -> c_6()
            eqNatList#(Nil(),Nil()) -> c_7()
            eqNatList[Ite]#(True(),y,ys,x,xs) -> c_25(eqNatList#(xs,ys))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:7.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
        - Weak DPs:
            domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs))
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            eqNatList#(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs)
            eqNatList[Ite]#(True(),y,ys,x,xs) -> eqNatList#(xs,ys)
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:domatch#(Cons(x,xs),Nil(),n) -> c_2()
             
          
          2:S:domatch#(Nil(),Nil(),n) -> c_3()
             
          
          3:S:prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
             -->_1 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs)):3
          
          4:W:domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
             -->_1 domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))):7
             -->_1 domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil()))):6
          
          5:W:domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs))
             -->_1 prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs)):3
          
          6:W:domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
             -->_1 domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs)):5
             -->_1 domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n):4
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():2
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():1
          
          7:W:domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
             -->_1 domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs)):5
             -->_1 domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n):4
             -->_1 domatch#(Nil(),Nil(),n) -> c_3():2
             -->_1 domatch#(Cons(x,xs),Nil(),n) -> c_2():1
          
          8:W:eqNatList#(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs)
             -->_1 eqNatList[Ite]#(True(),y,ys,x,xs) -> eqNatList#(xs,ys):9
          
          9:W:eqNatList[Ite]#(True(),y,ys,x,xs) -> eqNatList#(xs,ys)
             -->_1 eqNatList#(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: eqNatList#(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite]#(!EQ(x,y),y,ys,x,xs)
          9: eqNatList[Ite]#(True(),y,ys,x,xs) -> eqNatList#(xs,ys)
*** Step 1.b:7.b:2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
        - Weak DPs:
            domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs))
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {!EQ,and,prefix,!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#}
        TcT has computed the following interpretation:
                      p(!EQ) = [0]         
                        p(0) = [0]         
                     p(Cons) = [0]         
                    p(False) = [0]         
                      p(Nil) = [0]         
                        p(S) = [0]         
                     p(True) = [0]         
                      p(and) = [0]         
                  p(domatch) = [0]         
             p(domatch[Ite]) = [1]         
                p(eqNatList) = [0]         
           p(eqNatList[Ite]) = [0]         
                 p(notEmpty) = [0]         
                   p(prefix) = [0]         
                 p(strmatch) = [0]         
                     p(!EQ#) = [0]         
                     p(and#) = [0]         
                 p(domatch#) = [11]        
            p(domatch[Ite]#) = [11]        
               p(eqNatList#) = [0]         
          p(eqNatList[Ite]#) = [0]         
                p(notEmpty#) = [0]         
                  p(prefix#) = [11]        
                p(strmatch#) = [0]         
                      p(c_1) = [0]         
                      p(c_2) = [10]        
                      p(c_3) = [11]        
                      p(c_4) = [0]         
                      p(c_5) = [0]         
                      p(c_6) = [0]         
                      p(c_7) = [0]         
                      p(c_8) = [0]         
                      p(c_9) = [0]         
                     p(c_10) = [0]         
                     p(c_11) = [1] x1 + [0]
                     p(c_12) = [0]         
                     p(c_13) = [0]         
                     p(c_14) = [0]         
                     p(c_15) = [0]         
                     p(c_16) = [0]         
                     p(c_17) = [0]         
                     p(c_18) = [0]         
                     p(c_19) = [0]         
                     p(c_20) = [0]         
                     p(c_21) = [0]         
                     p(c_22) = [0]         
                     p(c_23) = [0]         
                     p(c_24) = [0]         
                     p(c_25) = [0]         
        
        Following rules are strictly oriented:
        domatch#(Cons(x,xs),Nil(),n) = [11] 
                                     > [10] 
                                     = c_2()
        
        
        Following rules are (at-least) weakly oriented:
                     domatch#(patcs,Cons(x,xs),n) =  [11]                                                      
                                                  >= [11]                                                      
                                                  =  domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
        
                     domatch#(patcs,Cons(x,xs),n) =  [11]                                                      
                                                  >= [11]                                                      
                                                  =  prefix#(patcs,Cons(x,xs))                                 
        
                          domatch#(Nil(),Nil(),n) =  [11]                                                      
                                                  >= [11]                                                      
                                                  =  c_3()                                                     
        
        domatch[Ite]#(False(),patcs,Cons(x,xs),n) =  [11]                                                      
                                                  >= [11]                                                      
                                                  =  domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
        
         domatch[Ite]#(True(),patcs,Cons(x,xs),n) =  [11]                                                      
                                                  >= [11]                                                      
                                                  =  domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
        
                 prefix#(Cons(x',xs'),Cons(x,xs)) =  [11]                                                      
                                                  >= [11]                                                      
                                                  =  c_11(prefix#(xs',xs))                                     
        
                                     !EQ(0(),0()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  True()                                                    
        
                                    !EQ(0(),S(y)) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  False()                                                   
        
                                    !EQ(S(x),0()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  False()                                                   
        
                                   !EQ(S(x),S(y)) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  !EQ(x,y)                                                  
        
                             and(False(),False()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  False()                                                   
        
                              and(False(),True()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  False()                                                   
        
                              and(True(),False()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  False()                                                   
        
                               and(True(),True()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  True()                                                    
        
                         prefix(Cons(x,xs),Nil()) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  False()                                                   
        
                  prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  and(!EQ(x',x),prefix(xs',xs))                             
        
                                 prefix(Nil(),cs) =  [0]                                                       
                                                  >= [0]                                                       
                                                  =  True()                                                    
        
*** Step 1.b:7.b:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            domatch#(Nil(),Nil(),n) -> c_3()
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
        - Weak DPs:
            domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(domatch[Ite]#) = {1},
            uargs(c_11) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                        p(!EQ) = [0]                                    
                          p(0) = [1]                                    
                       p(Cons) = [1] x1 + [1] x2 + [1]                  
                      p(False) = [0]                                    
                        p(Nil) = [0]                                    
                          p(S) = [2]                                    
                       p(True) = [0]                                    
                        p(and) = [1] x1 + [1] x2 + [0]                  
                    p(domatch) = [1]                                    
               p(domatch[Ite]) = [1] x1 + [1] x2 + [1] x3 + [1] x4 + [4]
                  p(eqNatList) = [1] x1 + [1] x2 + [0]                  
             p(eqNatList[Ite]) = [4] x3 + [1] x5 + [1]                  
                   p(notEmpty) = [1] x1 + [1]                           
                     p(prefix) = [0]                                    
                   p(strmatch) = [4] x1 + [1] x2 + [1]                  
                       p(!EQ#) = [4] x1 + [4] x2 + [1]                  
                       p(and#) = [2] x1 + [2] x2 + [0]                  
                   p(domatch#) = [3] x1 + [2] x2 + [1] x3 + [2]         
              p(domatch[Ite]#) = [1] x1 + [3] x2 + [2] x3 + [1] x4 + [2]
                 p(eqNatList#) = [4] x2 + [0]                           
            p(eqNatList[Ite]#) = [4] x1 + [1] x2 + [1] x3 + [1] x5 + [1]
                  p(notEmpty#) = [1] x1 + [1]                           
                    p(prefix#) = [3] x1 + [2] x2 + [2]                  
                  p(strmatch#) = [4] x1 + [1]                           
                        p(c_1) = [1] x1 + [0]                           
                        p(c_2) = [5]                                    
                        p(c_3) = [0]                                    
                        p(c_4) = [1]                                    
                        p(c_5) = [0]                                    
                        p(c_6) = [4]                                    
                        p(c_7) = [2]                                    
                        p(c_8) = [1]                                    
                        p(c_9) = [1]                                    
                       p(c_10) = [1]                                    
                       p(c_11) = [1] x1 + [0]                           
                       p(c_12) = [0]                                    
                       p(c_13) = [0]                                    
                       p(c_14) = [0]                                    
                       p(c_15) = [0]                                    
                       p(c_16) = [0]                                    
                       p(c_17) = [0]                                    
                       p(c_18) = [0]                                    
                       p(c_19) = [0]                                    
                       p(c_20) = [0]                                    
                       p(c_21) = [0]                                    
                       p(c_22) = [0]                                    
                       p(c_23) = [0]                                    
                       p(c_24) = [0]                                    
                       p(c_25) = [0]                                    
          
          Following rules are strictly oriented:
                   domatch#(Nil(),Nil(),n) = [1] n + [2]                            
                                           > [0]                                    
                                           = c_3()                                  
          
          prefix#(Cons(x',xs'),Cons(x,xs)) = [2] x + [3] x' + [2] xs + [3] xs' + [7]
                                           > [2] xs + [3] xs' + [2]                 
                                           = c_11(prefix#(xs',xs))                  
          
          
          Following rules are (at-least) weakly oriented:
                       domatch#(patcs,Cons(x,xs),n) =  [1] n + [3] patcs + [2] x + [2] xs + [4]                  
                                                    >= [1] n + [3] patcs + [2] x + [2] xs + [4]                  
                                                    =  domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
          
                       domatch#(patcs,Cons(x,xs),n) =  [1] n + [3] patcs + [2] x + [2] xs + [4]                  
                                                    >= [3] patcs + [2] x + [2] xs + [4]                          
                                                    =  prefix#(patcs,Cons(x,xs))                                 
          
                       domatch#(Cons(x,xs),Nil(),n) =  [1] n + [3] x + [3] xs + [5]                              
                                                    >= [5]                                                       
                                                    =  c_2()                                                     
          
          domatch[Ite]#(False(),patcs,Cons(x,xs),n) =  [1] n + [3] patcs + [2] x + [2] xs + [4]                  
                                                    >= [1] n + [3] patcs + [2] xs + [4]                          
                                                    =  domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
          
           domatch[Ite]#(True(),patcs,Cons(x,xs),n) =  [1] n + [3] patcs + [2] x + [2] xs + [4]                  
                                                    >= [1] n + [3] patcs + [2] xs + [4]                          
                                                    =  domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
          
                                       !EQ(0(),0()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  True()                                                    
          
                                      !EQ(0(),S(y)) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  False()                                                   
          
                                      !EQ(S(x),0()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  False()                                                   
          
                                     !EQ(S(x),S(y)) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  !EQ(x,y)                                                  
          
                               and(False(),False()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  False()                                                   
          
                                and(False(),True()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  False()                                                   
          
                                and(True(),False()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  False()                                                   
          
                                 and(True(),True()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  True()                                                    
          
                           prefix(Cons(x,xs),Nil()) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  False()                                                   
          
                    prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  and(!EQ(x',x),prefix(xs',xs))                             
          
                                   prefix(Nil(),cs) =  [0]                                                       
                                                    >= [0]                                                       
                                                    =  True()                                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:7.b:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            domatch#(patcs,Cons(x,xs),n) -> domatch[Ite]#(prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch#(patcs,Cons(x,xs),n) -> prefix#(patcs,Cons(x,xs))
            domatch#(Cons(x,xs),Nil(),n) -> c_2()
            domatch#(Nil(),Nil(),n) -> c_3()
            domatch[Ite]#(False(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite]#(True(),patcs,Cons(x,xs),n) -> domatch#(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            prefix#(Cons(x',xs'),Cons(x,xs)) -> c_11(prefix#(xs',xs))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2,!EQ#/2
            ,and#/2,domatch#/3,domatch[Ite]#/4,eqNatList#/2,eqNatList[Ite]#/5,notEmpty#/1,prefix#/2,strmatch#/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/1,c_12/0
            ,c_13/1,c_14/0,c_15/0,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0,c_21/0,c_22/1,c_23/1,c_24/0,c_25/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ#,and#,domatch#,domatch[Ite]#,eqNatList#
            ,eqNatList[Ite]#,notEmpty#,prefix#,strmatch#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))