WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(a(),a()) -> f(a(),b()) f(a(),b()) -> f(s(a()),c()) f(c(),c()) -> f(a(),a()) f(s(X),c()) -> f(X,c()) - Signature: {f/2} / {a/0,b/0,c/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {a,b,c,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(a(),a()) -> f(a(),b()) f(a(),b()) -> f(s(a()),c()) f(c(),c()) -> f(a(),a()) f(s(X),c()) -> f(X,c()) - Signature: {f/2} / {a/0,b/0,c/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {a,b,c,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,c()){x -> s(x)} = f(s(x),c()) ->^+ f(x,c()) = C[f(x,c()) = f(x,c()){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(a(),a()) -> f(a(),b()) f(a(),b()) -> f(s(a()),c()) f(c(),c()) -> f(a(),a()) f(s(X),c()) -> f(X,c()) - Signature: {f/2} / {a/0,b/0,c/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {a,b,c,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(a(),a()) -> c_1(f#(a(),b())) f#(a(),b()) -> c_2(f#(s(a()),c())) f#(c(),c()) -> c_3(f#(a(),a())) f#(s(X),c()) -> c_4(f#(X,c())) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(a(),a()) -> c_1(f#(a(),b())) f#(a(),b()) -> c_2(f#(s(a()),c())) f#(c(),c()) -> c_3(f#(a(),a())) f#(s(X),c()) -> c_4(f#(X,c())) - Weak TRS: f(a(),a()) -> f(a(),b()) f(a(),b()) -> f(s(a()),c()) f(c(),c()) -> f(a(),a()) f(s(X),c()) -> f(X,c()) - Signature: {f/2,f#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,b,c,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(a(),a()) -> c_1(f#(a(),b())) f#(a(),b()) -> c_2(f#(s(a()),c())) f#(c(),c()) -> c_3(f#(a(),a())) f#(s(X),c()) -> c_4(f#(X,c())) ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(a(),a()) -> c_1(f#(a(),b())) f#(a(),b()) -> c_2(f#(s(a()),c())) f#(c(),c()) -> c_3(f#(a(),a())) f#(s(X),c()) -> c_4(f#(X,c())) - Signature: {f/2,f#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,b,c,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [3] p(b) = [0] p(c) = [1] p(f) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [2] p(f#) = [5] x1 + [2] x2 + [4] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: f#(a(),a()) = [25] > [19] = c_1(f#(a(),b())) f#(s(X),c()) = [5] X + [16] > [5] X + [6] = c_4(f#(X,c())) Following rules are (at-least) weakly oriented: f#(a(),b()) = [19] >= [31] = c_2(f#(s(a()),c())) f#(c(),c()) = [11] >= [25] = c_3(f#(a(),a())) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(a(),b()) -> c_2(f#(s(a()),c())) f#(c(),c()) -> c_3(f#(a(),a())) - Weak DPs: f#(a(),a()) -> c_1(f#(a(),b())) f#(s(X),c()) -> c_4(f#(X,c())) - Signature: {f/2,f#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,b,c,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] p(c) = [1] p(f) = [4] x2 + [0] p(s) = [1] x1 + [0] p(f#) = [8] x1 + [0] p(c_1) = [2] x1 + [0] p(c_2) = [4] x1 + [0] p(c_3) = [4] x1 + [6] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: f#(c(),c()) = [8] > [6] = c_3(f#(a(),a())) Following rules are (at-least) weakly oriented: f#(a(),a()) = [0] >= [0] = c_1(f#(a(),b())) f#(a(),b()) = [0] >= [0] = c_2(f#(s(a()),c())) f#(s(X),c()) = [8] X + [0] >= [8] X + [0] = c_4(f#(X,c())) ** Step 1.b:5: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(a(),b()) -> c_2(f#(s(a()),c())) - Weak DPs: f#(a(),a()) -> c_1(f#(a(),b())) f#(c(),c()) -> c_3(f#(a(),a())) f#(s(X),c()) -> c_4(f#(X,c())) - Signature: {f/2,f#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,b,c,s} + Applied Processor: MI {miKind = Automaton Nothing, miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind Automaton Nothing: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(a) = [0] [4] p(b) = [0] [1] p(c) = [2] [0] p(f) = [1 1] x_2 + [0] [2 0] [1] p(s) = [1 0] x_1 + [0] [0 1] [11] p(f#) = [8 0] x_1 + [0 2] x_2 + [0] [8 0] [0 0] [3] p(c_1) = [4 0] x_1 + [0] [0 0] [3] p(c_2) = [8 0] x_1 + [1] [0 0] [0] p(c_3) = [2 0] x_1 + [0] [2 0] [3] p(c_4) = [1 0] x_1 + [0] [0 1] [0] Following rules are strictly oriented: f#(a(),b()) = [2] [3] > [1] [0] = c_2(f#(s(a()),c())) Following rules are (at-least) weakly oriented: f#(a(),a()) = [8] [3] >= [8] [3] = c_1(f#(a(),b())) f#(c(),c()) = [16] [19] >= [16] [19] = c_3(f#(a(),a())) f#(s(X),c()) = [8 0] X + [0] [8 0] [3] >= [8 0] X + [0] [8 0] [3] = c_4(f#(X,c())) ** Step 1.b:6: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(a(),a()) -> c_1(f#(a(),b())) f#(a(),b()) -> c_2(f#(s(a()),c())) f#(c(),c()) -> c_3(f#(a(),a())) f#(s(X),c()) -> c_4(f#(X,c())) - Signature: {f/2,f#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,b,c,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))