WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,d,f,p,q,s,t} and constructors {0,cs,nf,nil,ns,nt,r} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,d,f,p,q,s,t} and constructors {0,cs,nf,nil,ns,nt,r} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: a(x){x -> nf(x,y)} = a(nf(x,y)) ->^+ f(a(x),a(y)) = C[a(x) = a(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,d,f,p,q,s,t} and constructors {0,cs,nf,nil,ns,nt,r} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) a#(ns(X)) -> c_3(s#(a(X)),a#(X)) a#(nt(X)) -> c_4(t#(a(X)),a#(X)) d#(0()) -> c_5() d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) f#(X1,X2) -> c_7() f#(0(),X) -> c_8() f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) p#(X,0()) -> c_10() p#(0(),X) -> c_11() p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) q#(0()) -> c_13() q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) s#(X) -> c_15() t#(N) -> c_16(q#(N)) t#(X) -> c_17() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) a#(ns(X)) -> c_3(s#(a(X)),a#(X)) a#(nt(X)) -> c_4(t#(a(X)),a#(X)) d#(0()) -> c_5() d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) f#(X1,X2) -> c_7() f#(0(),X) -> c_8() f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) p#(X,0()) -> c_10() p#(0(),X) -> c_11() p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) q#(0()) -> c_13() q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) s#(X) -> c_15() t#(N) -> c_16(q#(N)) t#(X) -> c_17() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/3,c_3/2,c_4/2,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,5,6,7,8,9,10,11,12,13,14,15,17} by application of Pre({1,5,6,7,8,9,10,11,12,13,14,15,17}) = {2,3,4,16}. Here rules are labelled as follows: 1: a#(X) -> c_1() 2: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) 3: a#(ns(X)) -> c_3(s#(a(X)),a#(X)) 4: a#(nt(X)) -> c_4(t#(a(X)),a#(X)) 5: d#(0()) -> c_5() 6: d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) 7: f#(X1,X2) -> c_7() 8: f#(0(),X) -> c_8() 9: f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) 10: p#(X,0()) -> c_10() 11: p#(0(),X) -> c_11() 12: p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) 13: q#(0()) -> c_13() 14: q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) 15: s#(X) -> c_15() 16: t#(N) -> c_16(q#(N)) 17: t#(X) -> c_17() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) a#(ns(X)) -> c_3(s#(a(X)),a#(X)) a#(nt(X)) -> c_4(t#(a(X)),a#(X)) t#(N) -> c_16(q#(N)) - Weak DPs: a#(X) -> c_1() d#(0()) -> c_5() d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) f#(X1,X2) -> c_7() f#(0(),X) -> c_8() f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) p#(X,0()) -> c_10() p#(0(),X) -> c_11() p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) q#(0()) -> c_13() q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) s#(X) -> c_15() t#(X) -> c_17() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/3,c_3/2,c_4/2,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {4} by application of Pre({4}) = {3}. Here rules are labelled as follows: 1: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) 2: a#(ns(X)) -> c_3(s#(a(X)),a#(X)) 3: a#(nt(X)) -> c_4(t#(a(X)),a#(X)) 4: t#(N) -> c_16(q#(N)) 5: a#(X) -> c_1() 6: d#(0()) -> c_5() 7: d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) 8: f#(X1,X2) -> c_7() 9: f#(0(),X) -> c_8() 10: f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) 11: p#(X,0()) -> c_10() 12: p#(0(),X) -> c_11() 13: p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) 14: q#(0()) -> c_13() 15: q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) 16: s#(X) -> c_15() 17: t#(X) -> c_17() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) a#(ns(X)) -> c_3(s#(a(X)),a#(X)) a#(nt(X)) -> c_4(t#(a(X)),a#(X)) - Weak DPs: a#(X) -> c_1() d#(0()) -> c_5() d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) f#(X1,X2) -> c_7() f#(0(),X) -> c_8() f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) p#(X,0()) -> c_10() p#(0(),X) -> c_11() p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) q#(0()) -> c_13() q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) s#(X) -> c_15() t#(N) -> c_16(q#(N)) t#(X) -> c_17() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/3,c_3/2,c_4/2,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) -->_3 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_2 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_3 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_2 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_1 f#(0(),X) -> c_8():8 -->_1 f#(X1,X2) -> c_7():7 -->_3 a#(X) -> c_1():4 -->_2 a#(X) -> c_1():4 -->_3 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 -->_2 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 2:S:a#(ns(X)) -> c_3(s#(a(X)),a#(X)) -->_2 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_1 s#(X) -> c_15():15 -->_2 a#(X) -> c_1():4 -->_2 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_2 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 3:S:a#(nt(X)) -> c_4(t#(a(X)),a#(X)) -->_1 t#(N) -> c_16(q#(N)):16 -->_1 t#(X) -> c_17():17 -->_2 a#(X) -> c_1():4 -->_2 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_2 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_2 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 4:W:a#(X) -> c_1() 5:W:d#(0()) -> c_5() 6:W:d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) 7:W:f#(X1,X2) -> c_7() 8:W:f#(0(),X) -> c_8() 9:W:f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) 10:W:p#(X,0()) -> c_10() 11:W:p#(0(),X) -> c_11() 12:W:p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) 13:W:q#(0()) -> c_13() 14:W:q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) 15:W:s#(X) -> c_15() 16:W:t#(N) -> c_16(q#(N)) -->_1 q#(0()) -> c_13():13 17:W:t#(X) -> c_17() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 14: q#(s(X)) -> c_14(s#(p(q(X),d(X))),p#(q(X),d(X)),q#(X),d#(X)) 12: p#(s(X),s(Y)) -> c_12(s#(s(p(X,Y))),s#(p(X,Y)),p#(X,Y)) 11: p#(0(),X) -> c_11() 10: p#(X,0()) -> c_10() 9: f#(s(X),cs(Y,Z)) -> c_9(a#(Z)) 6: d#(s(X)) -> c_6(s#(s(d(X))),s#(d(X)),d#(X)) 5: d#(0()) -> c_5() 7: f#(X1,X2) -> c_7() 8: f#(0(),X) -> c_8() 15: s#(X) -> c_15() 4: a#(X) -> c_1() 17: t#(X) -> c_17() 16: t#(N) -> c_16(q#(N)) 13: q#(0()) -> c_13() ** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) a#(ns(X)) -> c_3(s#(a(X)),a#(X)) a#(nt(X)) -> c_4(t#(a(X)),a#(X)) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/3,c_3/2,c_4/2,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)) -->_3 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_2 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_3 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_2 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_3 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 -->_2 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 2:S:a#(ns(X)) -> c_3(s#(a(X)),a#(X)) -->_2 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_2 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_2 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 3:S:a#(nt(X)) -> c_4(t#(a(X)),a#(X)) -->_2 a#(nt(X)) -> c_4(t#(a(X)),a#(X)):3 -->_2 a#(ns(X)) -> c_3(s#(a(X)),a#(X)):2 -->_2 a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2)),a#(X1),a#(X2)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) a#(ns(X)) -> c_3(a#(X)) a#(nt(X)) -> c_4(a#(X)) ** Step 1.b:6: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) a#(ns(X)) -> c_3(a#(X)) a#(nt(X)) -> c_4(a#(X)) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/2,c_3/1,c_4/1,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) a#(ns(X)) -> c_3(a#(X)) a#(nt(X)) -> c_4(a#(X)) ** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) a#(ns(X)) -> c_3(a#(X)) a#(nt(X)) -> c_4(a#(X)) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/2,c_3/1,c_4/1,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(a) = [0] p(cs) = [1] x1 + [1] x2 + [0] p(d) = [0] p(f) = [0] p(nf) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(ns) = [1] x1 + [0] p(nt) = [1] x1 + [3] p(p) = [0] p(q) = [0] p(r) = [1] x1 + [0] p(s) = [0] p(t) = [0] p(a#) = [5] x1 + [0] p(d#) = [0] p(f#) = [0] p(p#) = [0] p(q#) = [0] p(s#) = [0] p(t#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [0] p(c_13) = [0] p(c_14) = [0] p(c_15) = [0] p(c_16) = [0] p(c_17) = [0] Following rules are strictly oriented: a#(nt(X)) = [5] X + [15] > [5] X + [0] = c_4(a#(X)) Following rules are (at-least) weakly oriented: a#(nf(X1,X2)) = [5] X1 + [5] X2 + [0] >= [5] X1 + [5] X2 + [0] = c_2(a#(X1),a#(X2)) a#(ns(X)) = [5] X + [0] >= [5] X + [0] = c_3(a#(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:8: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) a#(ns(X)) -> c_3(a#(X)) - Weak DPs: a#(nt(X)) -> c_4(a#(X)) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/2,c_3/1,c_4/1,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(a) = [0] p(cs) = [1] x1 + [1] x2 + [0] p(d) = [0] p(f) = [0] p(nf) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(ns) = [1] x1 + [5] p(nt) = [1] x1 + [0] p(p) = [0] p(q) = [0] p(r) = [1] x1 + [0] p(s) = [0] p(t) = [0] p(a#) = [1] x1 + [0] p(d#) = [0] p(f#) = [0] p(p#) = [0] p(q#) = [0] p(s#) = [0] p(t#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [0] p(c_13) = [0] p(c_14) = [0] p(c_15) = [0] p(c_16) = [0] p(c_17) = [0] Following rules are strictly oriented: a#(ns(X)) = [1] X + [5] > [1] X + [0] = c_3(a#(X)) Following rules are (at-least) weakly oriented: a#(nf(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = c_2(a#(X1),a#(X2)) a#(nt(X)) = [1] X + [0] >= [1] X + [0] = c_4(a#(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:9: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) - Weak DPs: a#(ns(X)) -> c_3(a#(X)) a#(nt(X)) -> c_4(a#(X)) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/2,c_3/1,c_4/1,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {a#,d#,f#,p#,q#,s#,t#} TcT has computed the following interpretation: p(0) = [1] p(a) = [1] x1 + [2] p(cs) = [0] p(d) = [2] p(f) = [1] x2 + [2] p(nf) = [1] x1 + [1] x2 + [1] p(nil) = [1] p(ns) = [1] x1 + [0] p(nt) = [1] x1 + [0] p(p) = [2] x1 + [1] x2 + [1] p(q) = [1] x1 + [1] p(r) = [1] p(s) = [0] p(t) = [0] p(a#) = [4] x1 + [0] p(d#) = [0] p(f#) = [2] x1 + [1] x2 + [0] p(p#) = [1] x1 + [4] x2 + [2] p(q#) = [1] x1 + [8] p(s#) = [1] x1 + [1] p(t#) = [4] x1 + [0] p(c_1) = [2] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [2] p(c_6) = [1] x3 + [2] p(c_7) = [1] p(c_8) = [8] p(c_9) = [1] x1 + [0] p(c_10) = [1] p(c_11) = [4] p(c_12) = [1] x1 + [1] x2 + [2] x3 + [1] p(c_13) = [0] p(c_14) = [1] x1 + [0] p(c_15) = [0] p(c_16) = [1] p(c_17) = [4] Following rules are strictly oriented: a#(nf(X1,X2)) = [4] X1 + [4] X2 + [4] > [4] X1 + [4] X2 + [0] = c_2(a#(X1),a#(X2)) Following rules are (at-least) weakly oriented: a#(ns(X)) = [4] X + [0] >= [4] X + [0] = c_3(a#(X)) a#(nt(X)) = [4] X + [0] >= [4] X + [0] = c_4(a#(X)) ** Step 1.b:10: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: a#(nf(X1,X2)) -> c_2(a#(X1),a#(X2)) a#(ns(X)) -> c_3(a#(X)) a#(nt(X)) -> c_4(a#(X)) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/2,c_3/1,c_4/1,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/3,c_13/0,c_14/4,c_15/0,c_16/1,c_17/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))