WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: g(x){x -> s(x)} = g(s(x)) ->^+ s(g(x)) = C[g(x) = g(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) g#(0()) -> c_2() g#(s(x)) -> c_3(g#(x)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) g#(0()) -> c_2() g#(s(x)) -> c_3(g#(x)) - Weak TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1,f#/3,g#/1} / {0/0,s/1,c_1/3,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {1,3}. Here rules are labelled as follows: 1: f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) 2: g#(0()) -> c_2() 3: g#(s(x)) -> c_3(g#(x)) ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) g#(s(x)) -> c_3(g#(x)) - Weak DPs: g#(0()) -> c_2() - Weak TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1,f#/3,g#/1} / {0/0,s/1,c_1/3,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) -->_3 g#(s(x)) -> c_3(g#(x)):2 -->_3 g#(0()) -> c_2():3 -->_1 f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)):1 2:S:g#(s(x)) -> c_3(g#(x)) -->_1 g#(0()) -> c_2():3 -->_1 g#(s(x)) -> c_3(g#(x)):2 3:W:g#(0()) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: g#(0()) -> c_2() ** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) g#(s(x)) -> c_3(g#(x)) - Weak TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1,f#/3,g#/1} / {0/0,s/1,c_1/3,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)) -->_3 g#(s(x)) -> c_3(g#(x)):2 -->_1 f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(s(0())),g#(x)):1 2:S:g#(s(x)) -> c_3(g#(x)) -->_1 g#(s(x)) -> c_3(g#(x)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(x)) ** Step 1.b:5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(g(x),s(0()),y) -> c_1(f#(g(s(0())),y,g(x)),g#(x)) g#(s(x)) -> c_3(g#(x)) - Weak TRS: f(g(x),s(0()),y) -> f(g(s(0())),y,g(x)) g(0()) -> 0() g(s(x)) -> s(g(x)) - Signature: {f/3,g/1,f#/3,g#/1} / {0/0,s/1,c_1/2,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: g#(s(x)) -> c_3(g#(x)) ** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(s(x)) -> c_3(g#(x)) - Signature: {f/3,g/1,f#/3,g#/1} / {0/0,s/1,c_1/2,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(f) = [2] p(g) = [0] p(s) = [1] x1 + [3] p(f#) = [0] p(g#) = [6] x1 + [2] p(c_1) = [8] x1 + [1] x2 + [1] p(c_2) = [0] p(c_3) = [1] x1 + [5] Following rules are strictly oriented: g#(s(x)) = [6] x + [20] > [6] x + [7] = c_3(g#(x)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(s(x)) -> c_3(g#(x)) - Signature: {f/3,g/1,f#/3,g#/1} / {0/0,s/1,c_1/2,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))