WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0())) -> g(f(s(0()))) - Signature: {f/1,g/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0())) -> g(f(s(0()))) - Signature: {f/1,g/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x){x -> s(x)} = f(s(x)) ->^+ f(x) = C[f(x) = f(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0())) -> g(f(s(0()))) - Signature: {f/1,g/1} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) g(s(0())) -> g(f(s(0()))) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f(f(x)) -> f(x) f(s(x)) -> f(x) f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) ** Step 1.b:3: DecomposeDG WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) and a lower component f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) Further, following extension rules are added to the lower component. g#(s(0())) -> f#(s(0())) g#(s(0())) -> g#(f(s(0()))) *** Step 1.b:3.a:1: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))) -->_1 g#(s(0())) -> c_3(g#(f(s(0()))),f#(s(0()))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g#(s(0())) -> c_3(g#(f(s(0())))) *** Step 1.b:3.a:2: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(s(0())) -> c_3(g#(f(s(0())))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {f,f#,g#} TcT has computed the following interpretation: p(0) = [0] p(f) = [0] p(g) = [1] x1 + [1] p(s) = [12] p(f#) = [1] x1 + [0] p(g#) = [2] x1 + [3] p(c_1) = [1] p(c_2) = [2] x1 + [1] p(c_3) = [2] x1 + [2] Following rules are strictly oriented: g#(s(0())) = [27] > [8] = c_3(g#(f(s(0())))) Following rules are (at-least) weakly oriented: f(f(x)) = [0] >= [0] = f(x) f(s(x)) = [0] >= [0] = f(x) *** Step 1.b:3.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(s(0())) -> c_3(g#(f(s(0())))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:3.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) - Weak DPs: g#(s(0())) -> f#(s(0())) g#(s(0())) -> g#(f(s(0()))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(g#) = {1}, uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [12] p(f) = [1] x1 + [0] p(g) = [2] x1 + [1] p(s) = [1] x1 + [4] p(f#) = [1] x1 + [0] p(g#) = [1] x1 + [2] p(c_1) = [1] x1 + [5] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: f#(s(x)) = [1] x + [4] > [1] x + [0] = c_2(f#(x)) Following rules are (at-least) weakly oriented: f#(f(x)) = [1] x + [0] >= [1] x + [5] = c_1(f#(x)) g#(s(0())) = [18] >= [16] = f#(s(0())) g#(s(0())) = [18] >= [18] = g#(f(s(0()))) f(f(x)) = [1] x + [0] >= [1] x + [0] = f(x) f(s(x)) = [1] x + [4] >= [1] x + [0] = f(x) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:3.b:2: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(x)) - Weak DPs: f#(s(x)) -> c_2(f#(x)) g#(s(0())) -> f#(s(0())) g#(s(0())) -> g#(f(s(0()))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(0) = [0] p(f) = [2] x1 + [1] p(g) = [1] x1 + [0] p(s) = [1] x1 + [0] p(f#) = [4] x1 + [0] p(g#) = [9] p(c_1) = [2] x1 + [3] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [1] Following rules are strictly oriented: f#(f(x)) = [8] x + [4] > [8] x + [3] = c_1(f#(x)) Following rules are (at-least) weakly oriented: f#(s(x)) = [4] x + [0] >= [4] x + [0] = c_2(f#(x)) g#(s(0())) = [9] >= [0] = f#(s(0())) g#(s(0())) = [9] >= [9] = g#(f(s(0()))) *** Step 1.b:3.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(f(x)) -> c_1(f#(x)) f#(s(x)) -> c_2(f#(x)) g#(s(0())) -> f#(s(0())) g#(s(0())) -> g#(f(s(0()))) - Weak TRS: f(f(x)) -> f(x) f(s(x)) -> f(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))