WORST_CASE(?,O(1)) * Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0} / {0/0,cons/2,n__zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,tail,zeros} and constructors {0,cons,n__zeros} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0} / {0/0,cons/2,n__zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,tail,zeros} and constructors {0,cons,n__zeros} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) tail#(cons(X,XS)) -> c_3(activate#(XS)) zeros#() -> c_4() zeros#() -> c_5() Weak DPs and mark the set of starting terms. * Step 3: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) tail#(cons(X,XS)) -> c_3(activate#(XS)) zeros#() -> c_4() zeros#() -> c_5() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0,activate#/1,tail#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,tail#,zeros#} and constructors {0,cons ,n__zeros} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5} by application of Pre({1,4,5}) = {2,3}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__zeros()) -> c_2(zeros#()) 3: tail#(cons(X,XS)) -> c_3(activate#(XS)) 4: zeros#() -> c_4() 5: zeros#() -> c_5() * Step 4: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(n__zeros()) -> c_2(zeros#()) tail#(cons(X,XS)) -> c_3(activate#(XS)) - Weak DPs: activate#(X) -> c_1() zeros#() -> c_4() zeros#() -> c_5() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0,activate#/1,tail#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,tail#,zeros#} and constructors {0,cons ,n__zeros} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: activate#(n__zeros()) -> c_2(zeros#()) 2: tail#(cons(X,XS)) -> c_3(activate#(XS)) 3: activate#(X) -> c_1() 4: zeros#() -> c_4() 5: zeros#() -> c_5() * Step 5: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: tail#(cons(X,XS)) -> c_3(activate#(XS)) - Weak DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) zeros#() -> c_4() zeros#() -> c_5() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0,activate#/1,tail#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,tail#,zeros#} and constructors {0,cons ,n__zeros} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: tail#(cons(X,XS)) -> c_3(activate#(XS)) 2: activate#(X) -> c_1() 3: activate#(n__zeros()) -> c_2(zeros#()) 4: zeros#() -> c_4() 5: zeros#() -> c_5() * Step 6: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_2(zeros#()) tail#(cons(X,XS)) -> c_3(activate#(XS)) zeros#() -> c_4() zeros#() -> c_5() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0,activate#/1,tail#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,tail#,zeros#} and constructors {0,cons ,n__zeros} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:activate#(X) -> c_1() 2:W:activate#(n__zeros()) -> c_2(zeros#()) -->_1 zeros#() -> c_5():5 -->_1 zeros#() -> c_4():4 3:W:tail#(cons(X,XS)) -> c_3(activate#(XS)) -->_1 activate#(n__zeros()) -> c_2(zeros#()):2 -->_1 activate#(X) -> c_1():1 4:W:zeros#() -> c_4() 5:W:zeros#() -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: tail#(cons(X,XS)) -> c_3(activate#(XS)) 2: activate#(n__zeros()) -> c_2(zeros#()) 4: zeros#() -> c_4() 5: zeros#() -> c_5() 1: activate#(X) -> c_1() * Step 7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() tail(cons(X,XS)) -> activate(XS) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,tail/1,zeros/0,activate#/1,tail#/1,zeros#/0} / {0/0,cons/2,n__zeros/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,tail#,zeros#} and constructors {0,cons ,n__zeros} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))