Problem AG01 3.2

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

Problem:
 pred(s(x)) -> x
 minus(x,0()) -> x
 minus(x,s(y)) -> pred(minus(x,y))
 quot(0(),s(y)) -> 0()
 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0()
              , 2: minus^#(x, 0()) -> c_1()
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                minus^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                  [0 0 0]      [2 2 0]      [3]
                                  [0 0 0]      [2 2 2]      [3]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: YES(?,O(n^3))
             -----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [3 0 0] x1 + [1 0 0] x2 + [2]
                                [0 2 0]      [0 0 0]      [0]
                                [0 0 2]      [0 1 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [1 0 0] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [3 3 3] x1 + [2 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))}
               Weak Rules:
                 {  minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(pred^#) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 2 0]      [4]
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                minus(x1, x2) = [1 0 0] x1 + [4 0 0] x2 + [0]
                                [0 1 0]      [0 2 2]      [2]
                                [0 4 1]      [4 2 0]      [0]
                0() = [0]
                      [0]
                      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 2 0]      [0]
                             [0 0 0]      [0]
                minus^#(x1, x2) = [7 7 7] x1 + [2 0 4] x2 + [1]
                                  [7 7 7]      [6 0 0]      [3]
                                  [7 7 7]      [2 2 0]      [7]
                c_2(x1) = [4 1 0] x1 + [3]
                          [0 2 0]      [3]
                          [0 0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 1 0]      [0]
                s(x1) = [1 0 3] x1 + [3]
                        [0 1 1]      [0]
                        [0 0 0]      [2]
                minus(x1, x2) = [2 0 0] x1 + [0 2 2] x2 + [0]
                                [0 2 0]      [3 0 0]      [0]
                                [0 2 2]      [3 0 0]      [0]
                0() = [0]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [3 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {pred^#(s(x)) -> c_0()}
               Weak Rules:
                 {  minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(pred^#) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [2 0 0]      [0]
                           [2 0 0]      [0]
                s(x1) = [1 4 2] x1 + [2]
                        [0 0 3]      [2]
                        [0 0 1]      [2]
                minus(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [0]
                                [4 4 0]      [0 2 0]      [0]
                                [4 0 4]      [2 2 0]      [0]
                0() = [0]
                      [2]
                      [0]
                pred^#(x1) = [0 0 0] x1 + [2]
                             [2 0 0]      [2]
                             [0 0 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                minus^#(x1, x2) = [7 7 7] x1 + [2 0 2] x2 + [6]
                                  [7 7 7]      [2 2 2]      [3]
                                  [7 7 7]      [0 2 2]      [7]
                c_2(x1) = [4 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 2 0]      [7]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {1}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 1 0]      [0]
                s(x1) = [1 0 3] x1 + [3]
                        [0 1 1]      [0]
                        [0 0 0]      [2]
                minus(x1, x2) = [2 0 0] x1 + [0 2 2] x2 + [0]
                                [0 2 0]      [3 0 0]      [0]
                                [0 2 2]      [3 0 0]      [0]
                0() = [0]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0()
              , 2: minus^#(x, 0()) -> c_1()
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                  [0 0]      [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [3]
                           [0 1]      [3]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [2]
                minus(x1, x2) = [1 1] x1 + [0 3] x2 + [2]
                                [0 3]      [1 2]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [2 0] x1 + [0]
                             [3 3]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [2 1]      [1 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [3 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {1}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [2 1]      [1 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0()
              , 2: minus^#(x, 0()) -> c_1()
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                minus^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_1() = [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [1] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [3] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {1}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0(x)
              , 2: minus^#(x, 0()) -> c_1(x)
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [2]
                minus^#(x1, x2) = [7 7 7] x1 + [2 0 2] x2 + [7]
                                  [7 7 7]      [2 0 2]      [7]
                                  [7 7 7]      [2 0 2]      [7]
                c_1(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {3}: YES(?,O(n^3))
             -----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [3 0 0] x1 + [1 0 0] x2 + [2]
                                [0 2 0]      [0 0 0]      [0]
                                [0 0 2]      [0 1 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [1 0 0] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 3 3] x1 + [2 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))}
               Weak Rules:
                 {  minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(pred^#) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 2 0]      [4]
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                minus(x1, x2) = [1 0 0] x1 + [4 0 0] x2 + [0]
                                [0 1 0]      [0 2 2]      [2]
                                [0 4 1]      [4 2 0]      [0]
                0() = [0]
                      [0]
                      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 2 0]      [0]
                             [0 0 0]      [0]
                minus^#(x1, x2) = [7 7 7] x1 + [2 0 4] x2 + [1]
                                  [7 7 7]      [6 0 0]      [3]
                                  [7 7 7]      [2 2 0]      [7]
                c_2(x1) = [4 1 0] x1 + [3]
                          [0 2 0]      [3]
                          [0 0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [2 0 0] x1 + [3 0 0] x2 + [2]
                                [0 2 0]      [1 0 0]      [0]
                                [0 0 2]      [3 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [3 3 3] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {pred^#(s(x)) -> c_0(x)}
               Weak Rules:
                 {  minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(pred^#) = {}, Uargs(c_0) = {}, Uargs(minus^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 0 2] x1 + [2]
                        [0 1 0]      [2]
                        [0 0 1]      [2]
                minus(x1, x2) = [1 0 0] x1 + [2 0 0] x2 + [0]
                                [0 4 0]      [0 2 2]      [0]
                                [0 0 1]      [1 0 0]      [6]
                0() = [2]
                      [2]
                      [0]
                pred^#(x1) = [1 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [7 7 7] x1 + [4 0 0] x2 + [7]
                                  [7 7 7]      [2 0 0]      [3]
                                  [7 7 7]      [3 2 2]      [1]
                c_2(x1) = [1 0 0] x1 + [6]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(quot^#) = {1}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 1 0]      [0]
                s(x1) = [1 0 3] x1 + [3]
                        [0 1 1]      [0]
                        [0 0 0]      [2]
                minus(x1, x2) = [2 0 0] x1 + [0 2 2] x2 + [0]
                                [0 2 0]      [3 0 0]      [0]
                                [0 2 2]      [3 0 0]      [0]
                0() = [0]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0(x)
              , 2: minus^#(x, 0()) -> c_1(x)
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [7 7] x1 + [2 2] x2 + [7]
                                  [7 7]      [2 2]      [3]
                c_1(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [3]
                           [0 1]      [3]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [2]
                minus(x1, x2) = [1 1] x1 + [0 3] x2 + [2]
                                [0 3]      [1 2]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [2 0] x1 + [0]
                             [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [1]
                           [0 1]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                minus(x1, x2) = [3 3] x1 + [2 0] x2 + [2]
                                [3 3]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(quot^#) = {1}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [2 1]      [1 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0(x)
              , 2: minus^#(x, 0()) -> c_1(x)
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [5]
                minus^#(x1, x2) = [7] x1 + [3] x2 + [0]
                c_1(x1) = [1] x1 + [0]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [1] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(quot^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [1]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [3] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_0) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(quot^#) = {1}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  pred^#(s(x)) -> c_1(x)
               , minus^#(x, 0()) -> c_2(x)
               , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
               , quot^#(0(), s(y)) -> c_4()
               , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  pred^#(s(x)) -> c_1(x)
                 , minus^#(x, 0()) -> c_2(x)
                 , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
                 , quot^#(0(), s(y)) -> c_4()
                 , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
              Strict Trs:
                {  pred(s(x)) -> x
                 , minus(x, 0()) -> x
                 , minus(x, s(y)) -> pred(minus(x, y))
                 , quot(0(), s(y)) -> 0()
                 , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                'Sequentially' failed due to the following reason:
                  None of the processors succeeded.
                  
                  Details of failed attempt(s):
                  -----------------------------
                    1) 'empty' failed due to the following reason:
                         Empty strict component of the problem is NOT empty.
                    
                    2) 'Fastest' failed due to the following reason:
                         None of the processors succeeded.
                         
                         Details of failed attempt(s):
                         -----------------------------
                           1) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                The input cannot be shown compatible
                           
                           2) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                The input cannot be shown compatible
                           
                    
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  pred^#(s(x)) -> c_1(x)
               , minus^#(x, 0()) -> c_2(x)
               , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
               , quot^#(0(), s(y)) -> c_4()
               , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  pred^#(s(x)) -> c_1(x)
                 , minus^#(x, 0()) -> c_2(x)
                 , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
                 , quot^#(0(), s(y)) -> c_4()
                 , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
              Strict Trs:
                {  pred(s(x)) -> x
                 , minus(x, 0()) -> x
                 , minus(x, s(y)) -> pred(minus(x, y))
                 , quot(0(), s(y)) -> 0()
                 , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                'Sequentially' failed due to the following reason:
                  None of the processors succeeded.
                  
                  Details of failed attempt(s):
                  -----------------------------
                    1) 'empty' failed due to the following reason:
                         Empty strict component of the problem is NOT empty.
                    
                    2) 'Fastest' failed due to the following reason:
                         None of the processors succeeded.
                         
                         Details of failed attempt(s):
                         -----------------------------
                           1) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                The input cannot be shown compatible
                           
                           2) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                The input cannot be shown compatible
                           
                    
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.2

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.2

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputAG01 3.2

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  'dp' proved the goal fastest:
  
  We have computed the following dependency pairs
  
  Strict Dependency Pairs:
    {  pred^#(s(x)) -> c_1(x)
     , minus^#(x, 0()) -> c_2(x)
     , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
     , quot^#(0(), s(y)) -> c_4()
     , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
  
  We consider the following Problem:
  
    Strict DPs:
      {  pred^#(s(x)) -> c_1(x)
       , minus^#(x, 0()) -> c_2(x)
       , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
       , quot^#(0(), s(y)) -> c_4()
       , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
    Strict Trs:
      {  pred(s(x)) -> x
       , minus(x, 0()) -> x
       , minus(x, s(y)) -> pred(minus(x, y))
       , quot(0(), s(y)) -> 0()
       , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
    StartTerms: basic terms
    Strategy: none
  
  Certificate: YES(?,O(n^1))
  
  Application of 'usablerules':
  -----------------------------
    We replace strict/weak-rules by the corresponding usable rules:
    
      Strict Usable Rules:
        {  pred(s(x)) -> x
         , minus(x, 0()) -> x
         , minus(x, s(y)) -> pred(minus(x, y))}
    
    We consider the following Problem:
    
      Strict DPs:
        {  pred^#(s(x)) -> c_1(x)
         , minus^#(x, 0()) -> c_2(x)
         , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
         , quot^#(0(), s(y)) -> c_4()
         , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
      Strict Trs:
        {  pred(s(x)) -> x
         , minus(x, 0()) -> x
         , minus(x, s(y)) -> pred(minus(x, y))}
      StartTerms: basic terms
      Strategy: none
    
    Certificate: YES(?,O(n^1))
    
    Application of 'Fastest':
    -------------------------
      'pathanalysis' proved the goal fastest:
      
      We use following congruence DG for path analysis
      
      ->{2}                                                       [   YES(?,O(n^1))    ]
      
      ->{3}                                                       [   YES(?,O(n^1))    ]
         |
         `->{1}                                                   [   YES(?,O(n^1))    ]
      
      ->{5}                                                       [   YES(?,O(n^1))    ]
         |
         `->{4}                                                   [   YES(?,O(n^1))    ]
      
      
      Here rules are as follows:
      
        {  1: pred^#(s(x)) -> c_1(x)
         , 2: minus^#(x, 0()) -> c_2(x)
         , 3: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
         , 4: quot^#(0(), s(y)) -> c_4()
         , 5: quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
      
      * Path {2}: YES(?,O(n^1))
        -----------------------
        
        We consider the following Problem:
        
          Strict DPs: {minus^#(x, 0()) -> c_2(x)}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'removetails >>> ... >>> ... >>> ...':
        -----------------------------------------------------
          The processor is inapplicable since the strict component of the
          input problem is not empty
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs: {minus^#(x, 0()) -> c_2(x)}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             Dependency Pairs: {minus^#(x, 0()) -> c_2(x)}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(quot^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [3]
                           [0 0]      [3]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                                [0 0]      [0 0]      [1]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [3]
                                  [3 3]      [3 3]      [3]
                c_2(x1) = [1 1] x1 + [0]
                          [1 1]      [1]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs: {minus^#(x, 0()) -> c_2(x)}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               The processor is inapplicable since the strict component of the
               input problem is not empty
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs: {minus^#(x, 0()) -> c_2(x)}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {minus(x, 0()) -> x}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                      Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                      Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                      Uargs(quot^#) = {}, Uargs(c_5) = {}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     pred(x1) = [1 0] x1 + [0]
                                [0 0]      [0]
                     s(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                     minus(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                     [0 2]      [0 0]      [0]
                     0() = [2]
                           [0]
                     quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                     pred^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                     c_1(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [3]
                                       [3 3]      [0 0]      [3]
                     c_2(x1) = [1 1] x1 + [1]
                               [1 1]      [1]
                     c_3(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                     c_4() = [0]
                             [0]
                     c_5(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs: {minus^#(x, 0()) -> c_2(x)}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    The processor is inapplicable since the strict component of the
                    input problem is not empty
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs: {minus^#(x, 0()) -> c_2(x)}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       TRS Component: {pred(s(x)) -> x}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                           Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                           Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                           Uargs(quot^#) = {}, Uargs(c_5) = {}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          pred(x1) = [1 0] x1 + [0]
                                     [1 0]      [0]
                          s(x1) = [1 2] x1 + [1]
                                  [0 0]      [0]
                          minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                          [0 2]      [0 0]      [0]
                          0() = [0]
                                [0]
                          quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                          pred^#(x1) = [0 0] x1 + [0]
                                       [0 0]      [0]
                          c_1(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [3]
                                            [3 3]      [0 0]      [3]
                          c_2(x1) = [1 1] x1 + [1]
                                    [1 1]      [1]
                          c_3(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                          c_4() = [0]
                                  [0]
                          c_5(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                         Weak DPs: {minus^#(x, 0()) -> c_2(x)}
                         Weak Trs:
                           {  pred(s(x)) -> x
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(?,O(n^1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                         Weak DPs: {minus^#(x, 0()) -> c_2(x)}
                         Weak Trs:
                           {  pred(s(x)) -> x
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component: {minus(x, s(y)) -> pred(minus(x, y))}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                                Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                                Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                                Uargs(quot^#) = {}, Uargs(c_5) = {}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               pred(x1) = [1 0] x1 + [0]
                                          [2 0]      [3]
                               s(x1) = [1 2] x1 + [0]
                                       [0 0]      [2]
                               minus(x1, x2) = [1 0] x1 + [1 1] x2 + [2]
                                               [2 2]      [2 3]      [2]
                               0() = [0]
                                     [0]
                               quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                              [0 0]      [0 0]      [0]
                               pred^#(x1) = [0 0] x1 + [0]
                                            [0 0]      [0]
                               c_1(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [3]
                                                 [3 3]      [0 0]      [3]
                               c_2(x1) = [1 1] x1 + [1]
                                         [1 1]      [1]
                               c_3(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 0]      [0]
                               c_4() = [0]
                                       [0]
                               c_5(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Weak DPs: {minus^#(x, 0()) -> c_2(x)}
                              Weak Trs:
                                {  minus(x, s(y)) -> pred(minus(x, y))
                                 , pred(s(x)) -> x
                                 , minus(x, 0()) -> x}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: YES(O(1),O(1))
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              We consider the the dependency-graph
                              
                                1: minus^#(x, 0()) -> c_2(x)
                                
                              
                              together with the congruence-graph
                              
                                ->{1}                                                       Weak SCC
                                
                                
                                Here rules are as follows:
                                
                                  {1: minus^#(x, 0()) -> c_2(x)}
                              
                              The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                              
                                {1: minus^#(x, 0()) -> c_2(x)}
                              
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  minus(x, s(y)) -> pred(minus(x, y))
                                   , pred(s(x)) -> x
                                   , minus(x, 0()) -> x}
                                StartTerms: basic terms
                                Strategy: none
                              
                              Certificate: YES(O(1),O(1))
                              
                              Application of 'simpDPRHS >>> ...':
                              -----------------------------------
                                No rule was simplified
                                
                                We apply the transformation 'usablerules' on the resulting sub-problems:
                                Sub-problem 1:
                                --------------
                                  We consider the problem
                                  
                                  Weak Trs:
                                    {  minus(x, s(y)) -> pred(minus(x, y))
                                     , pred(s(x)) -> x
                                     , minus(x, 0()) -> x}
                                  StartTerms: basic terms
                                  Strategy: none
                                  
                                  The input problem is not a DP-problem.
                                
                                We abort the transformation and continue with the subprocessor on the problem
                                
                                Weak Trs:
                                  {  minus(x, s(y)) -> pred(minus(x, y))
                                   , pred(s(x)) -> x
                                   , minus(x, 0()) -> x}
                                StartTerms: basic terms
                                Strategy: none
                                
                                1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                   
                                     All strict components are empty, nothing to further orient
                                   
                                   We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                   
                                   Weak Trs:
                                     {  minus(x, s(y)) -> pred(minus(x, y))
                                      , pred(s(x)) -> x
                                      , minus(x, 0()) -> x}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                     We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                     
                                       All strict components are empty, nothing to further orient
                                     
                                     We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                     
                                     Weak Trs:
                                       {  minus(x, s(y)) -> pred(minus(x, y))
                                        , pred(s(x)) -> x
                                        , minus(x, 0()) -> x}
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                       All strict components are empty, nothing to further orient
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Weak Trs:
                                     {  minus(x, s(y)) -> pred(minus(x, y))
                                      , pred(s(x)) -> x
                                      , minus(x, 0()) -> x}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) No dependency-pair could be removed
                                      
                                      We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                      Sub-problem 1:
                                      --------------
                                        We consider the problem
                                        
                                        Weak Trs:
                                          {  minus(x, s(y)) -> pred(minus(x, y))
                                           , pred(s(x)) -> x
                                           , minus(x, 0()) -> x}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                        
                                          All strict components are empty, nothing to further orient
                                        
                                        We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                        
                                        Weak Trs:
                                          {  minus(x, s(y)) -> pred(minus(x, y))
                                           , pred(s(x)) -> x
                                           , minus(x, 0()) -> x}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                          We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                          
                                            All strict components are empty, nothing to further orient
                                          
                                          We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                          
                                          Weak Trs:
                                            {  minus(x, s(y)) -> pred(minus(x, y))
                                             , pred(s(x)) -> x
                                             , minus(x, 0()) -> x}
                                          StartTerms: basic terms
                                          Strategy: none
                                          
                                            All strict components are empty, nothing to further orient
                                      
                                      We abort the transformation and continue with the subprocessor on the problem
                                      
                                      Weak Trs:
                                        {  minus(x, s(y)) -> pred(minus(x, y))
                                         , pred(s(x)) -> x
                                         , minus(x, 0()) -> x}
                                      StartTerms: basic terms
                                      Strategy: none
                                      
                                      1) 'Sequentially' proved the goal fastest:
                                         
                                         'empty' succeeded:
                                         
                                         Empty rules are trivially bounded
                                      
                                   
                                
                         
                    
               
          
      
      * Path {3}: YES(?,O(n^1))
        -----------------------
        
        We consider the following Problem:
        
          Strict DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'removetails >>> ... >>> ... >>> ...':
        -----------------------------------------------------
          The processor is inapplicable since the strict component of the
          input problem is not empty
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             Dependency Pairs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                 Uargs(quot^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [2 0] x1 + [1]
                             [0 0]      [3]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [3]
                                  [3 3]      [0 0]      [3]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               The processor is inapplicable since the strict component of the
               input problem is not empty
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {minus(x, 0()) -> x}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                      Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                      Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                      Uargs(quot^#) = {}, Uargs(c_5) = {}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     pred(x1) = [1 0] x1 + [0]
                                [0 0]      [0]
                     s(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                     minus(x1, x2) = [2 0] x1 + [0 0] x2 + [1]
                                     [0 2]      [0 0]      [0]
                     0() = [0]
                           [0]
                     quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                     pred^#(x1) = [1 0] x1 + [2]
                                  [0 0]      [1]
                     c_1(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [3]
                                       [3 3]      [0 0]      [3]
                     c_2(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     c_3(x1) = [1 0] x1 + [0]
                               [0 1]      [2]
                     quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                     c_4() = [0]
                             [0]
                     c_5(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    The processor is inapplicable since the strict component of the
                    input problem is not empty
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       TRS Component: {minus(x, s(y)) -> pred(minus(x, y))}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                           Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                           Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                           Uargs(quot^#) = {}, Uargs(c_5) = {}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          pred(x1) = [1 0] x1 + [0]
                                     [0 0]      [0]
                          s(x1) = [1 0] x1 + [2]
                                  [0 0]      [3]
                          minus(x1, x2) = [1 0] x1 + [2 0] x2 + [0]
                                          [0 2]      [3 0]      [2]
                          0() = [0]
                                [0]
                          quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                          pred^#(x1) = [1 0] x1 + [3]
                                       [0 0]      [1]
                          c_1(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          minus^#(x1, x2) = [3 3] x1 + [2 0] x2 + [2]
                                            [3 3]      [0 3]      [1]
                          c_2(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          c_3(x1) = [1 0] x1 + [0]
                                    [0 1]      [2]
                          quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                          c_4() = [0]
                                  [0]
                          c_5(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Strict Trs: {pred(s(x)) -> x}
                         Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                         Weak Trs:
                           {  minus(x, s(y)) -> pred(minus(x, y))
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(?,O(n^1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict Trs: {pred(s(x)) -> x}
                         Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                         Weak Trs:
                           {  minus(x, s(y)) -> pred(minus(x, y))
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component: {pred(s(x)) -> x}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                                Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                                Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                                Uargs(quot^#) = {}, Uargs(c_5) = {}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               pred(x1) = [1 0] x1 + [0]
                                          [2 0]      [3]
                               s(x1) = [1 2] x1 + [2]
                                       [0 0]      [0]
                               minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                               [2 2]      [2 0]      [0]
                               0() = [0]
                                     [0]
                               quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                              [0 0]      [0 0]      [0]
                               pred^#(x1) = [2 0] x1 + [3]
                                            [0 0]      [1]
                               c_1(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               minus^#(x1, x2) = [3 3] x1 + [2 0] x2 + [2]
                                                 [3 3]      [2 0]      [3]
                               c_2(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_3(x1) = [1 0] x1 + [0]
                                         [0 1]      [2]
                               quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 0]      [0]
                               c_4() = [0]
                                       [0]
                               c_5(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                              Weak Trs:
                                {  pred(s(x)) -> x
                                 , minus(x, s(y)) -> pred(minus(x, y))
                                 , minus(x, 0()) -> x}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: YES(O(1),O(1))
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              We consider the the dependency-graph
                              
                                1: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
                                
                              
                              together with the congruence-graph
                              
                                ->{1}                                                       Weak SCC
                                
                                
                                Here rules are as follows:
                                
                                  {1: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                              
                              The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                              
                                {1: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                              
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  pred(s(x)) -> x
                                   , minus(x, s(y)) -> pred(minus(x, y))
                                   , minus(x, 0()) -> x}
                                StartTerms: basic terms
                                Strategy: none
                              
                              Certificate: YES(O(1),O(1))
                              
                              Application of 'simpDPRHS >>> ...':
                              -----------------------------------
                                No rule was simplified
                                
                                We apply the transformation 'usablerules' on the resulting sub-problems:
                                Sub-problem 1:
                                --------------
                                  We consider the problem
                                  
                                  Weak Trs:
                                    {  pred(s(x)) -> x
                                     , minus(x, s(y)) -> pred(minus(x, y))
                                     , minus(x, 0()) -> x}
                                  StartTerms: basic terms
                                  Strategy: none
                                  
                                  The input problem is not a DP-problem.
                                
                                We abort the transformation and continue with the subprocessor on the problem
                                
                                Weak Trs:
                                  {  pred(s(x)) -> x
                                   , minus(x, s(y)) -> pred(minus(x, y))
                                   , minus(x, 0()) -> x}
                                StartTerms: basic terms
                                Strategy: none
                                
                                1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                   
                                     All strict components are empty, nothing to further orient
                                   
                                   We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                   
                                   Weak Trs:
                                     {  pred(s(x)) -> x
                                      , minus(x, s(y)) -> pred(minus(x, y))
                                      , minus(x, 0()) -> x}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                     We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                     
                                       All strict components are empty, nothing to further orient
                                     
                                     We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                     
                                     Weak Trs:
                                       {  pred(s(x)) -> x
                                        , minus(x, s(y)) -> pred(minus(x, y))
                                        , minus(x, 0()) -> x}
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                       All strict components are empty, nothing to further orient
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Weak Trs:
                                     {  pred(s(x)) -> x
                                      , minus(x, s(y)) -> pred(minus(x, y))
                                      , minus(x, 0()) -> x}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) No dependency-pair could be removed
                                      
                                      We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                      Sub-problem 1:
                                      --------------
                                        We consider the problem
                                        
                                        Weak Trs:
                                          {  pred(s(x)) -> x
                                           , minus(x, s(y)) -> pred(minus(x, y))
                                           , minus(x, 0()) -> x}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                        
                                          All strict components are empty, nothing to further orient
                                        
                                        We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                        
                                        Weak Trs:
                                          {  pred(s(x)) -> x
                                           , minus(x, s(y)) -> pred(minus(x, y))
                                           , minus(x, 0()) -> x}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                          We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                          
                                            All strict components are empty, nothing to further orient
                                          
                                          We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                          
                                          Weak Trs:
                                            {  pred(s(x)) -> x
                                             , minus(x, s(y)) -> pred(minus(x, y))
                                             , minus(x, 0()) -> x}
                                          StartTerms: basic terms
                                          Strategy: none
                                          
                                            All strict components are empty, nothing to further orient
                                      
                                      We abort the transformation and continue with the subprocessor on the problem
                                      
                                      Weak Trs:
                                        {  pred(s(x)) -> x
                                         , minus(x, s(y)) -> pred(minus(x, y))
                                         , minus(x, 0()) -> x}
                                      StartTerms: basic terms
                                      Strategy: none
                                      
                                      1) 'Sequentially' proved the goal fastest:
                                         
                                         'empty' succeeded:
                                         
                                         Empty rules are trivially bounded
                                      
                                   
                                
                         
                    
               
          
      
      * Path {3}->{1}: YES(?,O(n^1))
        ----------------------------
        
        We consider the following Problem:
        
          Strict DPs: {pred^#(s(x)) -> c_1(x)}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'removetails >>> ... >>> ... >>> ...':
        -----------------------------------------------------
          The processor is inapplicable since the strict component of the
          input problem is not empty
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs: {pred^#(s(x)) -> c_1(x)}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             TRS Component: {minus(x, 0()) -> x}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                 Uargs(quot^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                [0 2]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [2 0] x1 + [0]
                             [0 0]      [0]
                c_1(x1) = [0 0] x1 + [3]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [2]
                                  [3 3]      [0 0]      [3]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [3]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict DPs: {pred^#(s(x)) -> c_1(x)}
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
               Weak Trs: {minus(x, 0()) -> x}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               The processor is inapplicable since the strict component of the
               input problem is not empty
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict DPs: {pred^#(s(x)) -> c_1(x)}
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs: {minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
               Weak Trs: {minus(x, 0()) -> x}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  Dependency Pairs: {pred^#(s(x)) -> c_1(x)}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                      Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                      Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                      Uargs(quot^#) = {}, Uargs(c_5) = {}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     pred(x1) = [1 0] x1 + [0]
                                [0 0]      [0]
                     s(x1) = [1 0] x1 + [2]
                             [0 0]      [0]
                     minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                     [0 2]      [0 0]      [0]
                     0() = [0]
                           [0]
                     quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                     pred^#(x1) = [2 0] x1 + [0]
                                  [0 0]      [0]
                     c_1(x1) = [0 0] x1 + [3]
                               [0 0]      [0]
                     minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [2]
                                       [3 3]      [0 0]      [3]
                     c_2(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     c_3(x1) = [1 0] x1 + [2]
                               [0 1]      [3]
                     quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                     c_4() = [0]
                             [0]
                     c_5(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs:
                      {  pred^#(s(x)) -> c_1(x)
                       , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    The processor is inapplicable since the strict component of the
                    input problem is not empty
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs:
                      {  pred^#(s(x)) -> c_1(x)
                       , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       TRS Component: {minus(x, s(y)) -> pred(minus(x, y))}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                           Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                           Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                           Uargs(quot^#) = {}, Uargs(c_5) = {}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          pred(x1) = [1 0] x1 + [0]
                                     [0 0]      [0]
                          s(x1) = [1 0] x1 + [2]
                                  [0 0]      [2]
                          minus(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 2]      [2 0]      [0]
                          0() = [0]
                                [0]
                          quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                          pred^#(x1) = [2 0] x1 + [0]
                                       [0 0]      [0]
                          c_1(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          minus^#(x1, x2) = [3 3] x1 + [2 0] x2 + [2]
                                            [3 3]      [0 2]      [3]
                          c_2(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          c_3(x1) = [1 0] x1 + [3]
                                    [0 1]      [2]
                          quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                          c_4() = [0]
                                  [0]
                          c_5(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Strict Trs: {pred(s(x)) -> x}
                         Weak DPs:
                           {  pred^#(s(x)) -> c_1(x)
                            , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                         Weak Trs:
                           {  minus(x, s(y)) -> pred(minus(x, y))
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(?,O(n^1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict Trs: {pred(s(x)) -> x}
                         Weak DPs:
                           {  pred^#(s(x)) -> c_1(x)
                            , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                         Weak Trs:
                           {  minus(x, s(y)) -> pred(minus(x, y))
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component: {pred(s(x)) -> x}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                                Uargs(quot) = {}, Uargs(pred^#) = {1}, Uargs(c_1) = {},
                                Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
                                Uargs(quot^#) = {}, Uargs(c_5) = {}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               pred(x1) = [1 0] x1 + [0]
                                          [2 0]      [3]
                               s(x1) = [1 2] x1 + [2]
                                       [0 0]      [0]
                               minus(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                                               [2 3]      [2 0]      [0]
                               0() = [0]
                                     [0]
                               quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                              [0 0]      [0 0]      [0]
                               pred^#(x1) = [2 0] x1 + [0]
                                            [0 0]      [0]
                               c_1(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               minus^#(x1, x2) = [3 3] x1 + [2 0] x2 + [3]
                                                 [3 3]      [2 0]      [3]
                               c_2(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_3(x1) = [1 0] x1 + [3]
                                         [0 1]      [3]
                               quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 0]      [0]
                               c_4() = [0]
                                       [0]
                               c_5(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Weak DPs:
                                {  pred^#(s(x)) -> c_1(x)
                                 , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                              Weak Trs:
                                {  pred(s(x)) -> x
                                 , minus(x, s(y)) -> pred(minus(x, y))
                                 , minus(x, 0()) -> x}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: YES(O(1),O(1))
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              We consider the the dependency-graph
                              
                                1: pred^#(s(x)) -> c_1(x)
                                
                                2: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
                                     --> pred^#(s(x)) -> c_1(x): 1
                                
                              
                              together with the congruence-graph
                              
                                ->{2}                                                       Weak SCC
                                   |
                                   `->{1}                                                   Weak SCC
                                
                                
                                Here rules are as follows:
                                
                                  {  1: pred^#(s(x)) -> c_1(x)
                                   , 2: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))}
                              
                              The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                              
                                {  2: minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)))
                                 , 1: pred^#(s(x)) -> c_1(x)}
                              
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  pred(s(x)) -> x
                                   , minus(x, s(y)) -> pred(minus(x, y))
                                   , minus(x, 0()) -> x}
                                StartTerms: basic terms
                                Strategy: none
                              
                              Certificate: YES(O(1),O(1))
                              
                              Application of 'simpDPRHS >>> ...':
                              -----------------------------------
                                No rule was simplified
                                
                                We apply the transformation 'usablerules' on the resulting sub-problems:
                                Sub-problem 1:
                                --------------
                                  We consider the problem
                                  
                                  Weak Trs:
                                    {  pred(s(x)) -> x
                                     , minus(x, s(y)) -> pred(minus(x, y))
                                     , minus(x, 0()) -> x}
                                  StartTerms: basic terms
                                  Strategy: none
                                  
                                  The input problem is not a DP-problem.
                                
                                We abort the transformation and continue with the subprocessor on the problem
                                
                                Weak Trs:
                                  {  pred(s(x)) -> x
                                   , minus(x, s(y)) -> pred(minus(x, y))
                                   , minus(x, 0()) -> x}
                                StartTerms: basic terms
                                Strategy: none
                                
                                1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                   
                                     All strict components are empty, nothing to further orient
                                   
                                   We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                   
                                   Weak Trs:
                                     {  pred(s(x)) -> x
                                      , minus(x, s(y)) -> pred(minus(x, y))
                                      , minus(x, 0()) -> x}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                     We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                     
                                       All strict components are empty, nothing to further orient
                                     
                                     We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                     
                                     Weak Trs:
                                       {  pred(s(x)) -> x
                                        , minus(x, s(y)) -> pred(minus(x, y))
                                        , minus(x, 0()) -> x}
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                       All strict components are empty, nothing to further orient
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Weak Trs:
                                     {  pred(s(x)) -> x
                                      , minus(x, s(y)) -> pred(minus(x, y))
                                      , minus(x, 0()) -> x}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) No dependency-pair could be removed
                                      
                                      We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                      Sub-problem 1:
                                      --------------
                                        We consider the problem
                                        
                                        Weak Trs:
                                          {  pred(s(x)) -> x
                                           , minus(x, s(y)) -> pred(minus(x, y))
                                           , minus(x, 0()) -> x}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                        
                                          All strict components are empty, nothing to further orient
                                        
                                        We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                        
                                        Weak Trs:
                                          {  pred(s(x)) -> x
                                           , minus(x, s(y)) -> pred(minus(x, y))
                                           , minus(x, 0()) -> x}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                          We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                          
                                            All strict components are empty, nothing to further orient
                                          
                                          We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                          
                                          Weak Trs:
                                            {  pred(s(x)) -> x
                                             , minus(x, s(y)) -> pred(minus(x, y))
                                             , minus(x, 0()) -> x}
                                          StartTerms: basic terms
                                          Strategy: none
                                          
                                            All strict components are empty, nothing to further orient
                                      
                                      We abort the transformation and continue with the subprocessor on the problem
                                      
                                      Weak Trs:
                                        {  pred(s(x)) -> x
                                         , minus(x, s(y)) -> pred(minus(x, y))
                                         , minus(x, 0()) -> x}
                                      StartTerms: basic terms
                                      Strategy: none
                                      
                                      1) 'Sequentially' proved the goal fastest:
                                         
                                         'empty' succeeded:
                                         
                                         Empty rules are trivially bounded
                                      
                                   
                                
                         
                    
               
          
      
      * Path {5}: YES(?,O(n^1))
        -----------------------
        
        We consider the following Problem:
        
          Strict DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'removetails >>> ... >>> ... >>> ...':
        -----------------------------------------------------
          The processor is inapplicable since the strict component of the
          input problem is not empty
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             TRS Component: {minus(x, 0()) -> x}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(quot^#) = {1}, Uargs(c_5) = {1}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                [0 2]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [1 0] x1 + [1]
                          [0 1]      [3]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak Trs: {minus(x, 0()) -> x}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               The processor is inapplicable since the strict component of the
               input problem is not empty
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak Trs: {minus(x, 0()) -> x}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {pred(s(x)) -> x}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                      Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                      Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                      Uargs(quot^#) = {1}, Uargs(c_5) = {1}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     pred(x1) = [1 0] x1 + [2]
                                [2 0]      [0]
                     s(x1) = [1 1] x1 + [0]
                             [0 0]      [0]
                     minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 0]      [0]
                     0() = [0]
                           [0]
                     quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                     pred^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                     c_1(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 0]      [0 0]      [0]
                     c_2(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     c_3(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     quot^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                     c_4() = [0]
                             [0]
                     c_5(x1) = [1 0] x1 + [3]
                               [0 1]      [3]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                    Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                    Weak Trs:
                      {  pred(s(x)) -> x
                       , minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    The processor is inapplicable since the strict component of the
                    input problem is not empty
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                    Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                    Weak Trs:
                      {  pred(s(x)) -> x
                       , minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       Dependency Pairs:
                         {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                           Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                           Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                           Uargs(quot^#) = {1}, Uargs(c_5) = {1}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          pred(x1) = [1 0] x1 + [0]
                                     [1 0]      [0]
                          s(x1) = [1 2] x1 + [1]
                                  [0 0]      [0]
                          minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                          [0 2]      [0 0]      [0]
                          0() = [0]
                                [0]
                          quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                          pred^#(x1) = [0 0] x1 + [0]
                                       [0 0]      [0]
                          c_1(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 0]      [0 0]      [0]
                          c_2(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          c_3(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          quot^#(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                          c_4() = [0]
                                  [0]
                          c_5(x1) = [1 0] x1 + [0]
                                    [0 1]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                         Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                         Weak Trs:
                           {  pred(s(x)) -> x
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(?,O(n^1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                         Sub-problem 1:
                         --------------
                           We consider the problem
                           
                           Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                           Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                           Weak Trs:
                             {  pred(s(x)) -> x
                              , minus(x, 0()) -> x}
                           StartTerms: basic terms
                           Strategy: none
                           
                           We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                           
                             The weightgap principle does not apply
                           
                           We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                           
                           Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                           Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                           Weak Trs:
                             {  pred(s(x)) -> x
                              , minus(x, 0()) -> x}
                           StartTerms: basic terms
                           Strategy: none
                           
                             We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                             
                               The weightgap principle does not apply
                             
                             We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                             
                             Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                             Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                             Weak Trs:
                               {  pred(s(x)) -> x
                                , minus(x, 0()) -> x}
                             StartTerms: basic terms
                             Strategy: none
                             
                               The weightgap principle does not apply
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                         Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                         Weak Trs:
                           {  pred(s(x)) -> x
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) 'Fastest' proved the goal fastest:
                            
                            'Bounds with minimal-enrichment and initial automaton 'match' (timeout of 5.0 seconds)' proved the goal fastest:
                            
                            The problem is match-bounded by 0.
                            The enriched problem is compatible with the following automaton:
                            {  s_0(2) -> 2
                             , 0_0() -> 2}
                         
                    
               
          
      
      * Path {5}->{4}: YES(?,O(n^1))
        ----------------------------
        
        We consider the following Problem:
        
          Strict DPs: {quot^#(0(), s(y)) -> c_4()}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'removetails >>> ... >>> ... >>> ...':
        -----------------------------------------------------
          The processor is inapplicable since the strict component of the
          input problem is not empty
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs: {quot^#(0(), s(y)) -> c_4()}
          Strict Trs:
            {  pred(s(x)) -> x
             , minus(x, 0()) -> x
             , minus(x, s(y)) -> pred(minus(x, y))}
          Weak DPs: {quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             Dependency Pairs: {quot^#(0(), s(y)) -> c_4()}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(quot^#) = {1}, Uargs(c_5) = {1}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [1 0] x1 + [2 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_4() = [3]
                        [0]
                c_5(x1) = [1 0] x1 + [2]
                          [0 1]      [0]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs:
                 {  quot^#(0(), s(y)) -> c_4()
                  , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               The processor is inapplicable since the strict component of the
               input problem is not empty
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict Trs:
                 {  pred(s(x)) -> x
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))}
               Weak DPs:
                 {  quot^#(0(), s(y)) -> c_4()
                  , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {minus(x, 0()) -> x}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                      Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                      Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                      Uargs(quot^#) = {1}, Uargs(c_5) = {1}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     pred(x1) = [1 0] x1 + [0]
                                [0 0]      [0]
                     s(x1) = [1 0] x1 + [2]
                             [0 0]      [0]
                     minus(x1, x2) = [1 0] x1 + [0 0] x2 + [2]
                                     [0 2]      [0 0]      [0]
                     0() = [0]
                           [0]
                     quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                     pred^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                     c_1(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 0]      [0 0]      [0]
                     c_2(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     c_3(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     quot^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                     c_4() = [0]
                             [0]
                     c_5(x1) = [1 0] x1 + [0]
                               [0 1]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs:
                      {  quot^#(0(), s(y)) -> c_4()
                       , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    The processor is inapplicable since the strict component of the
                    input problem is not empty
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict Trs:
                      {  pred(s(x)) -> x
                       , minus(x, s(y)) -> pred(minus(x, y))}
                    Weak DPs:
                      {  quot^#(0(), s(y)) -> c_4()
                       , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                    Weak Trs: {minus(x, 0()) -> x}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       TRS Component: {pred(s(x)) -> x}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                           Uargs(quot) = {}, Uargs(pred^#) = {}, Uargs(c_1) = {},
                           Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                           Uargs(quot^#) = {1}, Uargs(c_5) = {1}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          pred(x1) = [1 0] x1 + [0]
                                     [2 0]      [0]
                          s(x1) = [1 2] x1 + [1]
                                  [0 0]      [0]
                          minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 0]      [0]
                          0() = [0]
                                [0]
                          quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                          pred^#(x1) = [0 0] x1 + [0]
                                       [0 0]      [0]
                          c_1(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 0]      [0 0]      [0]
                          c_2(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          c_3(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          quot^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                          c_4() = [0]
                                  [0]
                          c_5(x1) = [1 0] x1 + [2]
                                    [0 1]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                         Weak DPs:
                           {  quot^#(0(), s(y)) -> c_4()
                            , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                         Weak Trs:
                           {  pred(s(x)) -> x
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(?,O(n^1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                         Sub-problem 1:
                         --------------
                           We consider the problem
                           
                           Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                           Weak DPs:
                             {  quot^#(0(), s(y)) -> c_4()
                              , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                           Weak Trs:
                             {  pred(s(x)) -> x
                              , minus(x, 0()) -> x}
                           StartTerms: basic terms
                           Strategy: none
                           
                           We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                           
                             The weightgap principle does not apply
                           
                           We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                           
                           Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                           Weak DPs:
                             {  quot^#(0(), s(y)) -> c_4()
                              , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                           Weak Trs:
                             {  pred(s(x)) -> x
                              , minus(x, 0()) -> x}
                           StartTerms: basic terms
                           Strategy: none
                           
                             We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                             
                               The weightgap principle does not apply
                             
                             We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                             
                             Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                             Weak DPs:
                               {  quot^#(0(), s(y)) -> c_4()
                                , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                             Weak Trs:
                               {  pred(s(x)) -> x
                                , minus(x, 0()) -> x}
                             StartTerms: basic terms
                             Strategy: none
                             
                               The weightgap principle does not apply
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict Trs: {minus(x, s(y)) -> pred(minus(x, y))}
                         Weak DPs:
                           {  quot^#(0(), s(y)) -> c_4()
                            , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))}
                         Weak Trs:
                           {  pred(s(x)) -> x
                            , minus(x, 0()) -> x}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) 'Fastest' proved the goal fastest:
                            
                            'Bounds with perSymbol-enrichment and initial automaton 'match' (timeout of 5.0 seconds)' proved the goal fastest:
                            
                            The problem is match-bounded by 0.
                            The enriched problem is compatible with the following automaton:
                            {  s_0(2) -> 2
                             , s_0(4) -> 2
                             , 0_0() -> 4}
                         
                    
               
          

Hurray, we answered YES(?,O(n^1))

Tool tup3irc

Execution Time38.63611ms
Answer
MAYBE
InputAG01 3.2

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: MAYBE

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  pred^#(s(x)) -> c_1()
               , minus^#(x, 0()) -> c_2()
               , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)), minus^#(x, y))
               , quot^#(0(), s(y)) -> c_4()
               , quot^#(s(x), s(y)) ->
                 c_5(quot^#(minus(x, y), s(y)), minus^#(x, y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  pred^#(s(x)) -> c_1()
                 , minus^#(x, 0()) -> c_2()
                 , minus^#(x, s(y)) -> c_3(pred^#(minus(x, y)), minus^#(x, y))
                 , quot^#(0(), s(y)) -> c_4()
                 , quot^#(s(x), s(y)) ->
                   c_5(quot^#(minus(x, y), s(y)), minus^#(x, y))}
              Weak Trs:
                {  pred(s(x)) -> x
                 , minus(x, 0()) -> x
                 , minus(x, s(y)) -> pred(minus(x, y))
                 , quot(0(), s(y)) -> 0()
                 , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                'Sequentially' failed due to the following reason:
                  None of the processors succeeded.
                  
                  Details of failed attempt(s):
                  -----------------------------
                    1) 'empty' failed due to the following reason:
                         Empty strict component of the problem is NOT empty.
                    
                    2) 'Fastest' failed due to the following reason:
                         None of the processors succeeded.
                         
                         Details of failed attempt(s):
                         -----------------------------
                           1) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                The input cannot be shown compatible
                           
                           2) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                The input cannot be shown compatible
                           
                    
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..