Tool CaT
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
Problem:
not(true()) -> false()
not(false()) -> true()
evenodd(x,0()) -> not(evenodd(x,s(0())))
evenodd(0(),s(0())) -> false()
evenodd(s(x),s(0())) -> evenodd(x,0())
Proof:
Bounds Processor:
bound: 3
enrichment: match
automaton:
final states: {6,5}
transitions:
false3() -> 6,18,9
evenodd1(3,7) -> 18,9,6
evenodd1(4,8) -> 9*
evenodd1(1,8) -> 9*
evenodd1(2,7) -> 18,9,6
evenodd1(3,8) -> 9*
evenodd1(4,7) -> 18,9,6
evenodd1(1,7) -> 18,9,6
evenodd1(2,8) -> 9*
true3() -> 9,6,18
01() -> 7*
false1() -> 18,9,6,5
not1(9) -> 6*
s1(7) -> 8*
true1() -> 5*
not2(18) -> 18,9,6
not0(2) -> 5*
not0(4) -> 5*
not0(1) -> 5*
not0(3) -> 5*
evenodd2(3,17) -> 18*
evenodd2(2,17) -> 18*
evenodd2(4,17) -> 18*
evenodd2(1,17) -> 18*
true0() -> 1*
s2(16) -> 17*
false0() -> 2*
02() -> 16*
evenodd0(3,1) -> 6*
evenodd0(3,3) -> 6*
evenodd0(4,2) -> 6*
evenodd0(4,4) -> 6*
evenodd0(1,2) -> 6*
evenodd0(1,4) -> 6*
evenodd0(2,1) -> 6*
evenodd0(2,3) -> 6*
evenodd0(3,2) -> 6*
evenodd0(3,4) -> 6*
evenodd0(4,1) -> 6*
evenodd0(4,3) -> 6*
evenodd0(1,1) -> 6*
evenodd0(1,3) -> 6*
evenodd0(2,2) -> 6*
evenodd0(2,4) -> 6*
true2() -> 18,9,6
00() -> 3*
false2() -> 6*
s0(2) -> 4*
s0(4) -> 4*
s0(1) -> 4*
s0(3) -> 4*
problem:
QedTool IRC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
Tool IRC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
Proof Output:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}Tool RC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
Tool RC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
Proof Output:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}Tool pair1rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}
Hurray, we answered YES(?,O(n^1))Tool pair2rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}
Hurray, we answered YES(?,O(n^1))Tool pair3irc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}
Hurray, we answered YES(?,O(n^1))Tool pair3rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}
Hurray, we answered YES(?,O(n^1))Tool rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match' (timeout of 100.0 seconds)' proved the goal fastest:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}
Hurray, we answered YES(?,O(n^1))Tool tup3irc
Execution Time | 7.1521044e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, evenodd(0(), s(0())) -> false()
, evenodd(s(x), s(0())) -> evenodd(x, 0())}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_2(6) -> 1
, not_2(6) -> 3
, not_2(6) -> 6
, true_0() -> 2
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 6
, true_3() -> 1
, true_3() -> 3
, true_3() -> 6
, false_0() -> 2
, false_1() -> 1
, false_1() -> 3
, false_1() -> 6
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 6
, evenodd_0(2, 2) -> 1
, evenodd_1(2, 4) -> 3
, evenodd_1(2, 5) -> 1
, evenodd_1(2, 5) -> 3
, evenodd_1(2, 5) -> 6
, evenodd_2(2, 7) -> 6
, 0_0() -> 2
, 0_1() -> 5
, 0_2() -> 8
, s_0(2) -> 2
, s_1(5) -> 4
, s_2(8) -> 7}
Hurray, we answered YES(?,O(n^1))