Problem AG01 3.41

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.41

stdout:

MAYBE

Problem:
 p(s(x)) -> x
 fac(0()) -> s(0())
 fac(s(x)) -> times(s(x),fac(p(s(x))))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputAG01 3.41

stdout:

YES(?,O(n^1))

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^3))
InputAG01 3.41

stdout:

YES(?,O(n^3))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^3))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^3))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  p(s(x)) -> x
          , fac(0()) -> s(0())
          , fac(s(x)) -> times(s(x), fac(p(s(x))))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: p^#(s(x)) -> c_0()
            , 2: fac^#(0()) -> c_1()
            , 3: fac^#(s(x)) -> c_2(fac^#(p(s(x))))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3}                                                       [   YES(?,O(n^2))    ]
              |
              `->{2}                                                   [   YES(?,O(n^3))    ]
           
           ->{1}                                                       [    YES(?,O(1))     ]
           
         
       
       Sub-problems:
       -------------
         * Path {1}: YES(?,O(1))
           ---------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {}, Uargs(times) = {},
               Uargs(p^#) = {}, Uargs(fac^#) = {}, Uargs(c_2) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              s(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              fac^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {p^#(s(x)) -> c_0()}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [0 0 0] x1 + [2]
                      [0 0 0]      [2]
                      [0 0 0]      [2]
              p^#(x1) = [0 2 0] x1 + [7]
                        [2 2 0]      [3]
                        [2 2 2]      [3]
              c_0() = [0]
                      [1]
                      [1]
         
         * Path {3}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {}, Uargs(times) = {},
               Uargs(p^#) = {}, Uargs(fac^#) = {1}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [1 0 0] x1 + [3]
                      [0 1 0]      [3]
                      [0 0 1]      [3]
              s(x1) = [1 0 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              fac^#(x1) = [2 1 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^1))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {fac^#(s(x)) -> c_2(fac^#(p(s(x))))}
             Weak Rules: {p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [2 0 0] x1 + [0]
                      [1 0 0]      [0]
                      [0 1 0]      [0]
              s(x1) = [1 4 0] x1 + [0]
                      [0 0 1]      [0]
                      [0 0 1]      [4]
              fac^#(x1) = [0 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_2(x1) = [1 0 0] x1 + [3]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
         
         * Path {3}->{2}: YES(?,O(n^3))
           ----------------------------
           
           The usable rules for this path are:
           
             {p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {}, Uargs(times) = {},
               Uargs(p^#) = {}, Uargs(fac^#) = {1}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [3 3 3] x1 + [3]
                      [0 2 0]      [3]
                      [0 0 1]      [3]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              fac^#(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^3))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {fac^#(0()) -> c_1()}
             Weak Rules:
               {  fac^#(s(x)) -> c_2(fac^#(p(s(x))))
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [1 0 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 4 0]      [0]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 2]      [0]
                      [0 0 0]      [0]
              0() = [2]
                    [0]
                    [0]
              fac^#(x1) = [2 2 0] x1 + [0]
                          [0 4 0]      [4]
                          [0 0 0]      [0]
              c_1() = [1]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [3]
                        [0 0 0]      [0]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.41

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^3))
InputAG01 3.41

stdout:

YES(?,O(n^3))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^3))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^3))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  p(s(x)) -> x
          , fac(0()) -> s(0())
          , fac(s(x)) -> times(s(x), fac(p(s(x))))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: p^#(s(x)) -> c_0(x)
            , 2: fac^#(0()) -> c_1()
            , 3: fac^#(s(x)) -> c_2(x, fac^#(p(s(x))))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3}                                                       [   YES(?,O(n^2))    ]
              |
              `->{2}                                                   [   YES(?,O(n^3))    ]
           
           ->{1}                                                       [   YES(?,O(n^3))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {1}: YES(?,O(n^3))
           -----------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {}, Uargs(times) = {},
               Uargs(p^#) = {}, Uargs(c_0) = {}, Uargs(fac^#) = {},
               Uargs(c_2) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              s(x1) = [1 3 3] x1 + [0]
                      [0 1 1]      [0]
                      [0 0 1]      [0]
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [1 3 3] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_0(x1) = [1 0 1] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              fac^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {p^#(s(x)) -> c_0(x)}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_0) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [1 2 2] x1 + [2]
                      [0 0 2]      [2]
                      [0 0 0]      [2]
              p^#(x1) = [2 2 2] x1 + [3]
                        [2 2 2]      [3]
                        [2 2 2]      [3]
              c_0(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [1]
                        [0 0 0]      [1]
         
         * Path {3}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {}, Uargs(times) = {},
               Uargs(p^#) = {}, Uargs(c_0) = {}, Uargs(fac^#) = {1},
               Uargs(c_2) = {2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [1 0 0] x1 + [3]
                      [0 1 0]      [3]
                      [0 0 1]      [3]
              s(x1) = [1 0 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_0(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              fac^#(x1) = [2 1 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 1 0]      [0]
                            [0 0 0]      [0 0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^1))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {fac^#(s(x)) -> c_2(x, fac^#(p(s(x))))}
             Weak Rules: {p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac^#) = {}, Uargs(c_2) = {2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [1 0 0] x1 + [0]
                      [2 0 0]      [0]
                      [0 1 0]      [0]
              s(x1) = [1 1 0] x1 + [1]
                      [0 0 1]      [0]
                      [0 0 1]      [1]
              fac^#(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_2(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
         
         * Path {3}->{2}: YES(?,O(n^3))
           ----------------------------
           
           The usable rules for this path are:
           
             {p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {}, Uargs(times) = {},
               Uargs(p^#) = {}, Uargs(c_0) = {}, Uargs(fac^#) = {1},
               Uargs(c_2) = {2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [3 3 3] x1 + [3]
                      [0 2 0]      [3]
                      [0 0 1]      [3]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_0(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              fac^#(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 1 0]      [0]
                            [0 0 0]      [0 0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^3))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {fac^#(0()) -> c_1()}
             Weak Rules:
               {  fac^#(s(x)) -> c_2(x, fac^#(p(s(x))))
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(p) = {}, Uargs(s) = {}, Uargs(fac^#) = {}, Uargs(c_2) = {2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              p(x1) = [1 0 0] x1 + [0]
                      [2 0 0]      [0]
                      [0 4 0]      [0]
              s(x1) = [1 4 0] x1 + [0]
                      [0 0 1]      [0]
                      [0 0 0]      [0]
              0() = [2]
                    [0]
                    [0]
              fac^#(x1) = [2 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_1() = [1]
                      [0]
                      [0]
              c_2(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]

Tool pair1rc

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputAG01 3.41

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^2))

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {1}, Uargs(times) = {2}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      p(x1) = [1 0 0] x1 + [1]
              [1 0 0]      [0]
              [0 1 0]      [0]
      s(x1) = [1 1 0] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [2]
      fac(x1) = [1 0 2] x1 + [0]
                [0 0 0]      [1]
                [2 0 0]      [0]
      0() = [2]
            [0]
            [1]
      times(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                      [0 0 0]      [0 0 0]      [1]
                      [0 0 0]      [0 0 0]      [0]
  

Hurray, we answered YES(?,O(n^2))

Tool pair2rc

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputAG01 3.41

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^2))

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {1}, Uargs(times) = {2}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      p(x1) = [1 0 0] x1 + [1]
              [1 0 0]      [0]
              [0 1 0]      [0]
      s(x1) = [1 1 0] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [2]
      fac(x1) = [1 0 2] x1 + [0]
                [0 0 0]      [1]
                [2 0 0]      [0]
      0() = [2]
            [0]
            [1]
      times(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                      [0 0 0]      [0 0 0]      [1]
                      [0 0 0]      [0 0 0]      [0]
  

Hurray, we answered YES(?,O(n^2))

Tool pair3irc

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputAG01 3.41

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^2))

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {1}, Uargs(times) = {2}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      p(x1) = [1 0 0] x1 + [1]
              [1 0 0]      [0]
              [0 1 0]      [0]
      s(x1) = [1 1 0] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [2]
      fac(x1) = [1 0 2] x1 + [0]
                [0 0 0]      [1]
                [2 0 0]      [0]
      0() = [2]
            [0]
            [1]
      times(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                      [0 0 0]      [0 0 0]      [1]
                      [0 0 0]      [0 0 0]      [0]
  

Hurray, we answered YES(?,O(n^2))

Tool pair3rc

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputAG01 3.41

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^2))

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {1}, Uargs(times) = {2}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      p(x1) = [1 0 0] x1 + [1]
              [1 0 0]      [0]
              [0 1 0]      [0]
      s(x1) = [1 1 0] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [2]
      fac(x1) = [1 0 2] x1 + [0]
                [0 0 0]      [1]
                [2 0 0]      [0]
      0() = [2]
            [0]
            [1]
      times(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                      [0 0 0]      [0 0 0]      [1]
                      [0 0 0]      [0 0 0]      [0]
  

Hurray, we answered YES(?,O(n^2))

Tool rc

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputAG01 3.41

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^2))

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  'Fastest' proved the goal fastest:
  
  'Sequentially' proved the goal fastest:
  
  'Fastest' succeeded:
  
  'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
  
  The following argument positions are usable:
    Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {1}, Uargs(times) = {2}
  We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
  Interpretation Functions:
   p(x1) = [1 0 0] x1 + [1]
           [1 0 0]      [0]
           [0 1 0]      [0]
   s(x1) = [1 1 0] x1 + [0]
           [0 0 1]      [0]
           [0 0 1]      [2]
   fac(x1) = [1 0 2] x1 + [0]
             [0 0 0]      [1]
             [2 0 0]      [0]
   0() = [2]
         [0]
         [1]
   times(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                   [0 0 0]      [0 0 0]      [1]
                   [0 0 0]      [0 0 0]      [0]

Hurray, we answered YES(?,O(n^2))

Tool tup3irc

Execution Time4.631448ms
Answer
YES(?,O(n^2))
InputAG01 3.41

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^2))

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  p(s(x)) -> x
     , fac(0()) -> s(0())
     , fac(s(x)) -> times(s(x), fac(p(s(x))))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(p) = {}, Uargs(s) = {}, Uargs(fac) = {1}, Uargs(times) = {2}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      p(x1) = [1 0 0] x1 + [1]
              [1 0 0]      [0]
              [0 1 0]      [0]
      s(x1) = [1 1 0] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [2]
      fac(x1) = [1 0 2] x1 + [0]
                [0 0 0]      [1]
                [2 0 0]      [0]
      0() = [2]
            [0]
            [1]
      times(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                      [0 0 0]      [0 0 0]      [1]
                      [0 0 0]      [0 0 0]      [0]
  

Hurray, we answered YES(?,O(n^2))