Problem AG01 3.53

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.53

stdout:

MAYBE

Problem:
 minus(x,0()) -> x
 minus(s(x),s(y)) -> minus(x,y)
 quot(0(),s(y)) -> 0()
 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
 app(nil(),y) -> y
 app(add(n,x),y) -> add(n,app(x,y))
 reverse(nil()) -> nil()
 reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
 shuffle(nil()) -> nil()
 shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
 concat(leaf(),y) -> y
 concat(cons(u,v),y) -> cons(u,concat(v,y))
 less_leaves(x,leaf()) -> false()
 less_leaves(leaf(),cons(w,z)) -> true()
 less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.53

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.53

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: quot^#(0(), s(y)) -> c_2()
              , 4: quot^#(s(x), s(y)) -> c_3(quot^#(minus(x, y), s(y)))
              , 5: app^#(nil(), y) -> c_4()
              , 6: app^#(add(n, x), y) -> c_5(app^#(x, y))
              , 7: reverse^#(nil()) -> c_6()
              , 8: reverse^#(add(n, x)) -> c_7(app^#(reverse(x), add(n, nil())))
              , 9: shuffle^#(nil()) -> c_8()
              , 10: shuffle^#(add(n, x)) -> c_9(shuffle^#(reverse(x)))
              , 11: concat^#(leaf(), y) -> c_10()
              , 12: concat^#(cons(u, v), y) -> c_11(concat^#(v, y))
              , 13: less_leaves^#(x, leaf()) -> c_12()
              , 14: less_leaves^#(leaf(), cons(w, z)) -> c_13()
              , 15: less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [         NA         ]
                |
                |->{13}                                                  [         NA         ]
                |
                `->{14}                                                  [         NA         ]
             
             ->{12}                                                      [   YES(?,O(n^3))    ]
                |
                `->{11}                                                  [   YES(?,O(n^3))    ]
             
             ->{10}                                                      [     inherited      ]
                |
                `->{9}                                                   [       MAYBE        ]
             
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                minus^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                                  [2 2 0]      [0 2 0]      [0]
                                  [4 0 0]      [0 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                minus^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                                  [0 0 2]      [2 2 0]      [0]
                                  [0 0 0]      [0 2 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {4}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [3]
                                [0 2 0]      [0 0 0]      [1]
                                [0 0 1]      [0 0 0]      [1]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [2 0 3] x1 + [0 0 1] x2 + [3]
                                [0 2 2]      [0 0 0]      [1]
                                [0 0 1]      [0 0 0]      [3]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                reverse^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_6() = [0]
                        [1]
                        [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{9}.
           
           * Path {10}->{9}: MAYBE
             ---------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  shuffle^#(add(n, x)) -> c_9(shuffle^#(reverse(x)))
                  , shuffle^#(nil()) -> c_8()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {12}: YES(?,O(n^3))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {1}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [1 3 0] x1 + [0 0 0] x2 + [0]
                               [0 1 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                   [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {concat^#(cons(u, v), y) -> c_11(concat^#(v, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [1 4 4] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 1]      [2]
                concat^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                   [2 2 2]      [4 4 4]      [0]
                                   [2 0 2]      [4 4 4]      [0]
                c_11(x1) = [1 0 0] x1 + [3]
                           [0 0 0]      [6]
                           [2 0 0]      [2]
           
           * Path {12}->{11}: YES(?,O(n^3))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {1}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {concat^#(leaf(), y) -> c_10()}
               Weak Rules: {concat^#(cons(u, v), y) -> c_11(concat^#(v, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                leaf() = [2]
                         [2]
                         [2]
                cons(x1, x2) = [0 0 0] x1 + [1 4 0] x2 + [0]
                               [0 0 0]      [0 1 3]      [2]
                               [0 0 0]      [0 0 1]      [2]
                concat^#(x1, x2) = [0 3 2] x1 + [0 0 0] x2 + [0]
                                   [2 2 2]      [4 4 0]      [0]
                                   [2 2 2]      [4 4 0]      [0]
                c_10() = [1]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [7]
                           [0 0 0]      [7]
                           [0 0 0]      [7]
           
           * Path {15}: NA
             -------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 3] x1 + [1 0 0] x2 + [2]
                                 [0 0 1]      [0 1 0]      [0]
                                 [0 0 2]      [3 0 2]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 3] x1 + [1 0 0] x2 + [0]
                               [0 0 1]      [0 1 0]      [0]
                               [0 0 1]      [0 0 1]      [2]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [1 0 0] x1 + [1 1 0] x2 + [0]
                                        [3 3 3]      [3 3 3]      [0]
                                        [3 3 3]      [3 3 3]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{13}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [3 0 0] x1 + [3 2 2] x2 + [2]
                                 [2 0 0]      [3 3 3]      [0]
                                 [2 0 0]      [3 3 3]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{14}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [3 0 0] x1 + [3 2 2] x2 + [2]
                                 [2 0 0]      [3 3 3]      [0]
                                 [2 0 0]      [3 3 3]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                less_leaves^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: quot^#(0(), s(y)) -> c_2()
              , 4: quot^#(s(x), s(y)) -> c_3(quot^#(minus(x, y), s(y)))
              , 5: app^#(nil(), y) -> c_4()
              , 6: app^#(add(n, x), y) -> c_5(app^#(x, y))
              , 7: reverse^#(nil()) -> c_6()
              , 8: reverse^#(add(n, x)) -> c_7(app^#(reverse(x), add(n, nil())))
              , 9: shuffle^#(nil()) -> c_8()
              , 10: shuffle^#(add(n, x)) -> c_9(shuffle^#(reverse(x)))
              , 11: concat^#(leaf(), y) -> c_10()
              , 12: concat^#(cons(u, v), y) -> c_11(concat^#(v, y))
              , 13: less_leaves^#(x, leaf()) -> c_12()
              , 14: less_leaves^#(leaf(), cons(w, z)) -> c_13()
              , 15: less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [         NA         ]
                |
                |->{13}                                                  [         NA         ]
                |
                `->{14}                                                  [         NA         ]
             
             ->{12}                                                      [   YES(?,O(n^1))    ]
                |
                `->{11}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [     inherited      ]
                |
                `->{9}                                                   [       MAYBE        ]
             
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                minus^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                  [0 2]      [0 0]      [0]
                c_1(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                                  [0 0]      [4 1]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {4}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1 1] x1 + [0 0] x2 + [3]
                                [0 1]      [0 0]      [3]
                0() = [3]
                      [3]
                s(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [2 0] x1 + [0 0] x2 + [3]
                                [0 2]      [0 0]      [3]
                0() = [3]
                      [3]
                s(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                reverse^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{9}.
           
           * Path {10}->{9}: MAYBE
             ---------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  shuffle^#(add(n, x)) -> c_9(shuffle^#(reverse(x)))
                  , shuffle^#(nil()) -> c_8()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {12}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {1}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                   [3 3]      [3 3]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {concat^#(cons(u, v), y) -> c_11(concat^#(v, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [2]
                concat^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                   [4 5]      [4 4]      [0]
                c_11(x1) = [1 0] x1 + [1]
                           [0 0]      [7]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {1}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {concat^#(leaf(), y) -> c_10()}
               Weak Rules: {concat^#(cons(u, v), y) -> c_11(concat^#(v, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                leaf() = [2]
                         [0]
                cons(x1, x2) = [0 0] x1 + [1 3] x2 + [2]
                               [0 0]      [0 0]      [2]
                concat^#(x1, x2) = [3 0] x1 + [0 0] x2 + [4]
                                   [2 2]      [0 4]      [0]
                c_10() = [1]
                         [0]
                c_11(x1) = [1 0] x1 + [3]
                           [0 0]      [7]
           
           * Path {15}: NA
             -------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                                 [0 1]      [3 2]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
                               [0 1]      [0 1]      [1]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [1 0] x1 + [2 0] x2 + [0]
                                        [3 3]      [3 3]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{13}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [2 0] x1 + [3 2] x2 + [1]
                                 [0 0]      [3 3]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{14}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [2 0] x1 + [3 2] x2 + [1]
                                 [0 0]      [3 3]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                less_leaves^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: quot^#(0(), s(y)) -> c_2()
              , 4: quot^#(s(x), s(y)) -> c_3(quot^#(minus(x, y), s(y)))
              , 5: app^#(nil(), y) -> c_4()
              , 6: app^#(add(n, x), y) -> c_5(app^#(x, y))
              , 7: reverse^#(nil()) -> c_6()
              , 8: reverse^#(add(n, x)) -> c_7(app^#(reverse(x), add(n, nil())))
              , 9: shuffle^#(nil()) -> c_8()
              , 10: shuffle^#(add(n, x)) -> c_9(shuffle^#(reverse(x)))
              , 11: concat^#(leaf(), y) -> c_10()
              , 12: concat^#(cons(u, v), y) -> c_11(concat^#(v, y))
              , 13: less_leaves^#(x, leaf()) -> c_12()
              , 14: less_leaves^#(leaf(), cons(w, z)) -> c_13()
              , 15: less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [       MAYBE        ]
                |
                |->{13}                                                  [         NA         ]
                |
                `->{14}                                                  [         NA         ]
             
             ->{12}                                                      [   YES(?,O(n^1))    ]
                |
                `->{11}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [     inherited      ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_0() = [1]
                c_1(x1) = [1] x1 + [7]
           
           * Path {4}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1] x1 + [0] x2 + [3]
                0() = [3]
                s(x1) = [1] x1 + [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1] x1 + [1] x2 + [3]
                0() = [3]
                s(x1) = [1] x1 + [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                reverse^#(x1) = [1] x1 + [7]
                c_6() = [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{9}.
           
           * Path {10}->{9}: NA
             ------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {1}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [1] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_10() = [0]
                c_11(x1) = [1] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {concat^#(cons(u, v), y) -> c_11(concat^#(v, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [1] x2 + [4]
                concat^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_11(x1) = [1] x1 + [7]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {1}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [1] x1 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {concat^#(leaf(), y) -> c_10()}
               Weak Rules: {concat^#(cons(u, v), y) -> c_11(concat^#(v, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                leaf() = [2]
                cons(x1, x2) = [0] x1 + [1] x2 + [2]
                concat^#(x1, x2) = [2] x1 + [7] x2 + [4]
                c_10() = [1]
                c_11(x1) = [1] x1 + [4]
           
           * Path {15}: MAYBE
             ----------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))
                  , concat(leaf(), y) -> y
                  , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {15}->{13}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [2] x1 + [3] x2 + [1]
                leaf() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{14}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(reverse^#) = {}, Uargs(c_7) = {},
                 Uargs(shuffle^#) = {}, Uargs(c_9) = {}, Uargs(concat^#) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [2] x1 + [3] x2 + [1]
                leaf() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                less_leaves^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.53

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.53

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0(x)
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: quot^#(0(), s(y)) -> c_2()
              , 4: quot^#(s(x), s(y)) -> c_3(quot^#(minus(x, y), s(y)))
              , 5: app^#(nil(), y) -> c_4(y)
              , 6: app^#(add(n, x), y) -> c_5(n, app^#(x, y))
              , 7: reverse^#(nil()) -> c_6()
              , 8: reverse^#(add(n, x)) -> c_7(app^#(reverse(x), add(n, nil())))
              , 9: shuffle^#(nil()) -> c_8()
              , 10: shuffle^#(add(n, x)) -> c_9(n, shuffle^#(reverse(x)))
              , 11: concat^#(leaf(), y) -> c_10(y)
              , 12: concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))
              , 13: less_leaves^#(x, leaf()) -> c_12()
              , 14: less_leaves^#(leaf(), cons(w, z)) -> c_13()
              , 15: less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [         NA         ]
                |
                |->{13}                                                  [         NA         ]
                |
                `->{14}                                                  [         NA         ]
             
             ->{12}                                                      [   YES(?,O(n^3))    ]
                |
                `->{11}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [     inherited      ]
                |
                `->{9}                                                   [       MAYBE        ]
             
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                minus^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                                  [2 2 0]      [0 2 0]      [0]
                                  [4 0 0]      [0 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_0(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 1] x1 + [0]
                        [0 0 4]      [2]
                        [0 0 1]      [2]
                minus^#(x1, x2) = [2 0 2] x1 + [2 0 2] x2 + [0]
                                  [0 2 0]      [0 3 2]      [0]
                                  [4 2 2]      [5 2 0]      [0]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [6]
                          [0 0 0]      [3]
                          [2 3 0]      [7]
           
           * Path {4}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {1}, Uargs(c_3) = {1},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [3]
                                [0 2 0]      [0 0 0]      [1]
                                [0 0 1]      [0 0 0]      [1]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {1}, Uargs(c_3) = {1},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [2 0 3] x1 + [0 0 1] x2 + [3]
                                [0 2 2]      [0 0 0]      [1]
                                [0 0 1]      [0 0 0]      [3]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                reverse^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_6() = [0]
                        [1]
                        [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{9}.
           
           * Path {10}->{9}: MAYBE
             ---------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  shuffle^#(add(n, x)) -> c_9(n, shuffle^#(reverse(x)))
                  , shuffle^#(nil()) -> c_8()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {12}: YES(?,O(n^3))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [1 3 3] x1 + [1 3 0] x2 + [0]
                               [0 1 3]      [0 1 0]      [0]
                               [0 0 1]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                   [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 1]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1 2 2] x1 + [1 6 0] x2 + [2]
                               [0 0 2]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [0]
                                   [2 2 0]      [4 4 0]      [0]
                                   [0 0 0]      [4 0 4]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [1]
                               [0 0 0]      [0 0 0]      [3]
                               [0 0 0]      [0 0 0]      [0]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [1 1 1] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 1]      [0]
                less_leaves^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {concat^#(leaf(), y) -> c_10(y)}
               Weak Rules: {concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                leaf() = [2]
                         [2]
                         [2]
                cons(x1, x2) = [1 0 0] x1 + [1 0 4] x2 + [2]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [2]
                concat^#(x1, x2) = [2 0 2] x1 + [0 0 0] x2 + [0]
                                   [2 2 2]      [4 0 0]      [0]
                                   [2 0 2]      [4 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [1]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [7]
                               [0 0 0]      [0 0 0]      [7]
                               [0 0 0]      [0 0 0]      [7]
           
           * Path {15}: NA
             -------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [1 0 1] x1 + [1 0 0] x2 + [0]
                                 [0 0 0]      [3 1 0]      [0]
                                 [0 0 1]      [3 0 1]      [2]
                leaf() = [0]
                         [0]
                         [1]
                cons(x1, x2) = [1 0 1] x1 + [1 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 1]      [2]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                        [3 3 3]      [3 3 3]      [0]
                                        [3 3 3]      [3 3 3]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{13}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [2 0 0] x1 + [3 2 3] x2 + [2]
                                 [0 0 0]      [3 3 3]      [0]
                                 [0 0 0]      [3 3 3]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{14}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                concat(x1, x2) = [2 0 0] x1 + [3 2 3] x2 + [2]
                                 [0 0 0]      [3 3 3]      [0]
                                 [0 0 0]      [3 3 3]      [0]
                leaf() = [0]
                         [0]
                         [0]
                cons(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                      [0 0 0]      [0 0 0]      [0]
                                      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                true() = [0]
                         [0]
                         [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                concat^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_11(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                less_leaves^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                                        [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0(x)
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: quot^#(0(), s(y)) -> c_2()
              , 4: quot^#(s(x), s(y)) -> c_3(quot^#(minus(x, y), s(y)))
              , 5: app^#(nil(), y) -> c_4(y)
              , 6: app^#(add(n, x), y) -> c_5(n, app^#(x, y))
              , 7: reverse^#(nil()) -> c_6()
              , 8: reverse^#(add(n, x)) -> c_7(app^#(reverse(x), add(n, nil())))
              , 9: shuffle^#(nil()) -> c_8()
              , 10: shuffle^#(add(n, x)) -> c_9(n, shuffle^#(reverse(x)))
              , 11: concat^#(leaf(), y) -> c_10(y)
              , 12: concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))
              , 13: less_leaves^#(x, leaf()) -> c_12()
              , 14: less_leaves^#(leaf(), cons(w, z)) -> c_13()
              , 15: less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [         NA         ]
                |
                |->{13}                                                  [         NA         ]
                |
                `->{14}                                                  [         NA         ]
             
             ->{12}                                                      [   YES(?,O(n^2))    ]
                |
                `->{11}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [     inherited      ]
                |
                `->{9}                                                   [       MAYBE        ]
             
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                minus^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                  [0 2]      [0 0]      [0]
                c_1(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_0(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                minus^#(x1, x2) = [2 2] x1 + [0 2] x2 + [0]
                                  [4 1]      [3 2]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [2 0]      [0]
           
           * Path {4}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {1}, Uargs(c_3) = {1},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1 1] x1 + [0 0] x2 + [3]
                                [0 1]      [0 0]      [3]
                0() = [3]
                      [3]
                s(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {1}, Uargs(c_3) = {1},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [2 0] x1 + [0 0] x2 + [3]
                                [0 2]      [0 0]      [3]
                0() = [3]
                      [3]
                s(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                reverse^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{9}.
           
           * Path {10}->{9}: MAYBE
             ---------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  shuffle^#(add(n, x)) -> c_9(n, shuffle^#(reverse(x)))
                  , shuffle^#(nil()) -> c_8()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {12}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
                               [0 1]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                   [3 3]      [3 3]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [0]
                concat^#(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                   [2 1]      [0 4]      [0]
                c_11(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 0]      [3]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [1 1] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                less_leaves^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {concat^#(leaf(), y) -> c_10(y)}
               Weak Rules: {concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                leaf() = [2]
                         [2]
                cons(x1, x2) = [1 7] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [2]
                concat^#(x1, x2) = [2 2] x1 + [0 0] x2 + [0]
                                   [2 2]      [4 4]      [0]
                c_10(x1) = [0 0] x1 + [1]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [1 0] x2 + [6]
                               [0 0]      [0 0]      [7]
           
           * Path {15}: NA
             -------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                 [0 2]      [0 1]      [0]
                leaf() = [1]
                         [0]
                cons(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
                               [0 1]      [0 1]      [1]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [2 3] x1 + [1 0] x2 + [0]
                                        [3 3]      [3 3]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{13}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [2 0] x1 + [3 3] x2 + [2]
                                 [0 0]      [3 3]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{14}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                concat(x1, x2) = [2 0] x1 + [3 3] x2 + [2]
                                 [0 0]      [3 3]      [0]
                leaf() = [0]
                         [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                less_leaves(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                true() = [0]
                         [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                concat^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                less_leaves^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0(x)
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: quot^#(0(), s(y)) -> c_2()
              , 4: quot^#(s(x), s(y)) -> c_3(quot^#(minus(x, y), s(y)))
              , 5: app^#(nil(), y) -> c_4(y)
              , 6: app^#(add(n, x), y) -> c_5(n, app^#(x, y))
              , 7: reverse^#(nil()) -> c_6()
              , 8: reverse^#(add(n, x)) -> c_7(app^#(reverse(x), add(n, nil())))
              , 9: shuffle^#(nil()) -> c_8()
              , 10: shuffle^#(add(n, x)) -> c_9(n, shuffle^#(reverse(x)))
              , 11: concat^#(leaf(), y) -> c_10(y)
              , 12: concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))
              , 13: less_leaves^#(x, leaf()) -> c_12()
              , 14: less_leaves^#(leaf(), cons(w, z)) -> c_13()
              , 15: less_leaves^#(cons(u, v), cons(w, z)) ->
                    c_14(less_leaves^#(concat(u, v), concat(w, z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [         NA         ]
                |
                |->{13}                                                  [         NA         ]
                |
                `->{14}                                                  [         NA         ]
             
             ->{12}                                                      [   YES(?,O(n^1))    ]
                |
                `->{11}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [     inherited      ]
                |
                `->{9}                                                   [       MAYBE        ]
             
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_0(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_0(x1) = [0] x1 + [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {4}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {1}, Uargs(c_3) = {1},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1] x1 + [0] x2 + [3]
                0() = [3]
                s(x1) = [1] x1 + [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(s(x), s(y)) -> minus(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {1}, Uargs(c_3) = {1},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [1] x1 + [1] x2 + [3]
                0() = [3]
                s(x1) = [1] x1 + [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                reverse^#(x1) = [1] x1 + [7]
                c_6() = [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{6}->{5}.
           
           * Path {8}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{9}.
           
           * Path {10}->{9}: MAYBE
             ---------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  shuffle^#(add(n, x)) -> c_9(n, shuffle^#(reverse(x)))
                  , shuffle^#(nil()) -> c_8()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {12}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [1] x1 + [1] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [1] x1 + [1] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_11) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1] x1 + [1] x2 + [4]
                concat^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_11(x1, x2) = [0] x1 + [1] x2 + [7]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {}, Uargs(cons) = {},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}, Uargs(less_leaves^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [0] x1 + [0] x2 + [0]
                leaf() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11(x1, x2) = [0] x1 + [1] x2 + [0]
                less_leaves^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {concat^#(leaf(), y) -> c_10(y)}
               Weak Rules: {concat^#(cons(u, v), y) -> c_11(u, concat^#(v, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                leaf() = [2]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                concat^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_10(x1) = [1] x1 + [1]
                c_11(x1, x2) = [0] x1 + [1] x2 + [3]
           
           * Path {15}: NA
             -------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{13}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [2] x1 + [3] x2 + [1]
                leaf() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {15}->{14}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  concat(leaf(), y) -> y
                , concat(cons(u, v), y) -> cons(u, concat(v, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(quot) = {},
                 Uargs(app) = {}, Uargs(add) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(concat) = {2}, Uargs(cons) = {2},
                 Uargs(less_leaves) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
                 Uargs(app^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(reverse^#) = {}, Uargs(c_7) = {}, Uargs(shuffle^#) = {},
                 Uargs(c_9) = {}, Uargs(concat^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(less_leaves^#) = {1, 2}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                concat(x1, x2) = [2] x1 + [3] x2 + [1]
                leaf() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                less_leaves(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                true() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9(x1, x2) = [0] x1 + [0] x2 + [0]
                concat^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11(x1, x2) = [0] x1 + [0] x2 + [0]
                less_leaves^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.53

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.53

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.53

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.53

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.53

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time61.230568ms
Answer
TIMEOUT
InputAG01 3.53

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  minus(x, 0()) -> x
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(nil()) -> nil()
     , shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
     , concat(leaf(), y) -> y
     , concat(cons(u, v), y) -> cons(u, concat(v, y))
     , less_leaves(x, leaf()) -> false()
     , less_leaves(leaf(), cons(w, z)) -> true()
     , less_leaves(cons(u, v), cons(w, z)) ->
       less_leaves(concat(u, v), concat(w, z))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..