Problem AG01 3.54

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.54

stdout:

MAYBE

Problem:
 f(g(x)) -> g(f(f(x)))
 f(h(x)) -> h(g(x))
 f'(s(x),y,y) -> f'(y,x,s(x))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.54

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.54

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x)) -> c_0(f^#(f(x)))
              , 2: f^#(h(x)) -> c_1()
              , 3: f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}.
           
           * Path {1}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(g(x)) -> g(f(f(x)))
                , f(h(x)) -> h(g(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(g(x)) -> c_0(f^#(f(x)))
                  , f^#(h(x)) -> c_1()
                  , f(g(x)) -> g(f(f(x)))
                  , f(h(x)) -> h(g(x))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(f') = {},
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(f'^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f'(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                f'^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 1] x3 + [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 0]      [1]
                        [0 0 0]      [0]
                f'^#(x1, x2, x3) = [1 1 0] x1 + [1 1 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [4 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x)) -> c_0(f^#(f(x)))
              , 2: f^#(h(x)) -> c_1()
              , 3: f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}.
           
           * Path {1}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(g(x)) -> g(f(f(x)))
                , f(h(x)) -> h(g(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(g(x)) -> c_0(f^#(f(x)))
                  , f^#(h(x)) -> c_1()
                  , f(g(x)) -> g(f(f(x)))
                  , f(h(x)) -> h(g(x))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(f') = {},
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(f'^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f'(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 1]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                f'^#(x1, x2, x3) = [0 1] x1 + [0 1] x2 + [0 0] x3 + [0]
                                   [3 3]      [3 3]      [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [1]
                        [0 1]      [1]
                f'^#(x1, x2, x3) = [0 1] x1 + [0 1] x2 + [0 0] x3 + [3]
                                   [4 4]      [0 4]      [4 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x)) -> c_0(f^#(f(x)))
              , 2: f^#(h(x)) -> c_1()
              , 3: f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}.
           
           * Path {1}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(g(x)) -> g(f(f(x)))
                , f(h(x)) -> h(g(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(g(x)) -> c_0(f^#(f(x)))
                  , f^#(h(x)) -> c_1()
                  , f(g(x)) -> g(f(f(x)))
                  , f(h(x)) -> h(g(x))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(f') = {},
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(f'^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                h(x1) = [0] x1 + [0]
                f'(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [1] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1() = [0]
                f'^#(x1, x2, x3) = [3] x1 + [3] x2 + [0] x3 + [0]
                c_2(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                f'^#(x1, x2, x3) = [2] x1 + [2] x2 + [0] x3 + [0]
                c_2(x1) = [1] x1 + [3]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.54

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.54

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x)) -> c_0(f^#(f(x)))
              , 2: f^#(h(x)) -> c_1(x)
              , 3: f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}.
           
           * Path {1}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(g(x)) -> g(f(f(x)))
                , f(h(x)) -> h(g(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(g(x)) -> c_0(f^#(f(x)))
                  , f^#(h(x)) -> c_1(x)
                  , f(g(x)) -> g(f(f(x)))
                  , f(h(x)) -> h(g(x))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(f') = {},
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f'(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f'^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 1] x3 + [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 0]      [1]
                        [0 0 0]      [0]
                f'^#(x1, x2, x3) = [1 1 0] x1 + [1 1 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [4 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x)) -> c_0(f^#(f(x)))
              , 2: f^#(h(x)) -> c_1(x)
              , 3: f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}.
           
           * Path {1}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(g(x)) -> g(f(f(x)))
                , f(h(x)) -> h(g(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(g(x)) -> c_0(f^#(f(x)))
                  , f^#(h(x)) -> c_1(x)
                  , f(g(x)) -> g(f(f(x)))
                  , f(h(x)) -> h(g(x))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(f') = {},
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f'(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 1]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f'^#(x1, x2, x3) = [0 1] x1 + [0 1] x2 + [0 0] x3 + [0]
                                   [3 3]      [3 3]      [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [1]
                        [0 1]      [1]
                f'^#(x1, x2, x3) = [0 1] x1 + [0 1] x2 + [0 0] x3 + [3]
                                   [4 4]      [0 4]      [4 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x)) -> c_0(f^#(f(x)))
              , 2: f^#(h(x)) -> c_1(x)
              , 3: f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}.
           
           * Path {1}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(g(x)) -> g(f(f(x)))
                , f(h(x)) -> h(g(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(g(x)) -> c_0(f^#(f(x)))
                  , f^#(h(x)) -> c_1(x)
                  , f(g(x)) -> g(f(f(x)))
                  , f(h(x)) -> h(g(x))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(f') = {},
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                h(x1) = [0] x1 + [0]
                f'(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [1] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                f'^#(x1, x2, x3) = [3] x1 + [3] x2 + [0] x3 + [0]
                c_2(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f'^#(s(x), y, y) -> c_2(f'^#(y, x, s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f'^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                f'^#(x1, x2, x3) = [2] x1 + [2] x2 + [0] x3 + [0]
                c_2(x1) = [1] x1 + [3]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.54

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.54

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.54

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.54

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.54

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time60.05156ms
Answer
TIMEOUT
InputAG01 3.54

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(x)) -> g(f(f(x)))
     , f(h(x)) -> h(g(x))
     , f'(s(x), y, y) -> f'(y, x, s(x))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..