Problem AG01 3.8a

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.8a

stdout:

MAYBE

Problem:
 pred(s(x)) -> x
 minus(x,0()) -> x
 minus(x,s(y)) -> pred(minus(x,y))
 quot(0(),s(y)) -> 0()
 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
 log(s(0())) -> 0()
 log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.8a

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.8a

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0()
              , 2: minus^#(x, 0()) -> c_1()
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
              , 6: log^#(s(0())) -> c_5()
              , 7: log^#(s(s(x))) -> c_6(log^#(s(quot(x, s(s(0()))))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                minus^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                  [0 0 0]      [2 2 0]      [3]
                                  [0 0 0]      [2 2 2]      [3]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(minus^#) = {}, Uargs(c_2) = {1}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [3 0 0] x1 + [1 0 0] x2 + [2]
                                [0 2 0]      [0 0 0]      [0]
                                [0 0 2]      [0 1 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [1 0 0] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [3 3 3] x1 + [2 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(minus^#) = {}, Uargs(c_2) = {1}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 1 0]      [0]
                s(x1) = [1 0 3] x1 + [3]
                        [0 1 1]      [0]
                        [0 0 0]      [2]
                minus(x1, x2) = [2 0 0] x1 + [0 2 2] x2 + [0]
                                [0 2 0]      [3 0 0]      [0]
                                [0 2 2]      [3 0 0]      [0]
                0() = [0]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [3 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(quot^#) = {1},
                 Uargs(c_4) = {1}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 1 0]      [0]
                s(x1) = [1 0 3] x1 + [3]
                        [0 1 1]      [0]
                        [0 0 0]      [2]
                minus(x1, x2) = [2 0 0] x1 + [0 2 2] x2 + [0]
                                [0 2 0]      [3 0 0]      [0]
                                [0 2 2]      [3 0 0]      [0]
                0() = [0]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  quot(0(), s(y)) -> 0()
                , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
                , minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0()
              , 2: minus^#(x, 0()) -> c_1()
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
              , 6: log^#(s(0())) -> c_5()
              , 7: log^#(s(s(x))) -> c_6(log^#(s(quot(x, s(s(0()))))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                  [0 0]      [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(minus^#) = {}, Uargs(c_2) = {1}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [3]
                           [0 1]      [3]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [2]
                minus(x1, x2) = [1 1] x1 + [0 3] x2 + [2]
                                [0 3]      [1 2]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [2 0] x1 + [0]
                             [3 3]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(minus^#) = {}, Uargs(c_2) = {1}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [2 1]      [1 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [3 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(quot^#) = {1},
                 Uargs(c_4) = {1}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [2 1]      [1 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  quot(0(), s(y)) -> 0()
                , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
                , minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0()
              , 2: minus^#(x, 0()) -> c_1()
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
              , 6: log^#(s(0())) -> c_5()
              , 7: log^#(s(s(x))) -> c_6(log^#(s(quot(x, s(s(0()))))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                minus^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_1() = [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(minus^#) = {}, Uargs(c_2) = {1}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [1] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(minus^#) = {}, Uargs(c_2) = {1}, Uargs(quot^#) = {},
                 Uargs(c_4) = {}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [3] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(minus^#) = {}, Uargs(c_2) = {}, Uargs(quot^#) = {1},
                 Uargs(c_4) = {1}, Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  quot(0(), s(y)) -> 0()
                , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
                , minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.8a

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 3.8a

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0(x)
              , 2: minus^#(x, 0()) -> c_1(x)
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
              , 6: log^#(s(0())) -> c_5()
              , 7: log^#(s(s(x))) -> c_6(log^#(s(quot(x, s(s(0()))))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [2]
                minus^#(x1, x2) = [7 7 7] x1 + [2 0 2] x2 + [7]
                                  [7 7 7]      [2 0 2]      [7]
                                  [7 7 7]      [2 0 2]      [7]
                c_1(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [3 0 0] x1 + [1 0 0] x2 + [2]
                                [0 2 0]      [0 0 0]      [0]
                                [0 0 2]      [0 1 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [1 0 0] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 3 3] x1 + [2 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [2 0 0] x1 + [3 0 0] x2 + [2]
                                [0 2 0]      [1 0 0]      [0]
                                [0 0 2]      [3 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [3 3 3] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {1}, Uargs(c_4) = {1},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 1 0]      [0]
                s(x1) = [1 0 3] x1 + [3]
                        [0 1 1]      [0]
                        [0 0 0]      [2]
                minus(x1, x2) = [2 0 0] x1 + [0 2 2] x2 + [0]
                                [0 2 0]      [3 0 0]      [0]
                                [0 2 2]      [3 0 0]      [0]
                0() = [0]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                log(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                pred^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                log^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  quot(0(), s(y)) -> 0()
                , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
                , minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0(x)
              , 2: minus^#(x, 0()) -> c_1(x)
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
              , 6: log^#(s(0())) -> c_5()
              , 7: log^#(s(s(x))) -> c_6(log^#(s(quot(x, s(s(0()))))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [7 7] x1 + [2 2] x2 + [7]
                                  [7 7]      [2 2]      [3]
                c_1(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [3]
                           [0 1]      [3]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [2]
                minus(x1, x2) = [1 1] x1 + [0 3] x2 + [2]
                                [0 3]      [1 2]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [2 0] x1 + [0]
                             [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [1]
                           [0 1]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                minus(x1, x2) = [3 3] x1 + [2 0] x2 + [2]
                                [3 3]      [0 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {1}, Uargs(c_4) = {1},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
                minus(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [2 1]      [1 0]      [0]
                0() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                log(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                pred^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                log^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  quot(0(), s(y)) -> 0()
                , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
                , minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: pred^#(s(x)) -> c_0(x)
              , 2: minus^#(x, 0()) -> c_1(x)
              , 3: minus^#(x, s(y)) -> c_2(pred^#(minus(x, y)))
              , 4: quot^#(0(), s(y)) -> c_3()
              , 5: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
              , 6: log^#(s(0())) -> c_5()
              , 7: log^#(s(s(x))) -> c_6(log^#(s(quot(x, s(s(0()))))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [       MAYBE        ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [5]
                minus^#(x1, x2) = [7] x1 + [3] x2 + [0]
                c_1(x1) = [1] x1 + [0]
           
           * Path {3}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [1] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {1},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}, Uargs(quot^#) = {}, Uargs(c_4) = {},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [1]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [3] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y)))
                  , minus(x, 0()) -> x
                  , minus(x, s(y)) -> pred(minus(x, y))
                  , pred(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(pred) = {1}, Uargs(s) = {}, Uargs(minus) = {},
                 Uargs(quot) = {}, Uargs(log) = {}, Uargs(pred^#) = {},
                 Uargs(c_0) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {}, Uargs(quot^#) = {1}, Uargs(c_4) = {1},
                 Uargs(log^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                pred(x1) = [1] x1 + [3]
                s(x1) = [1] x1 + [2]
                minus(x1, x2) = [3] x1 + [2] x2 + [0]
                0() = [3]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                log(x1) = [0] x1 + [0]
                pred^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                log^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  quot(0(), s(y)) -> 0()
                , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
                , minus(x, 0()) -> x
                , minus(x, s(y)) -> pred(minus(x, y))
                , pred(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.8a

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.8a

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.8a

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.8a

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputAG01 3.8a

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time60.853558ms
Answer
TIMEOUT
InputAG01 3.8a

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  pred(s(x)) -> x
     , minus(x, 0()) -> x
     , minus(x, s(y)) -> pred(minus(x, y))
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , log(s(0())) -> 0()
     , log(s(s(x))) -> s(log(s(quot(x, s(s(0()))))))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..