Problem AG01 innermost 4.19

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.19

stdout:

MAYBE

Problem:
 f(x,c(x),c(y)) -> f(y,y,f(y,x,y))
 f(s(x),y,z) -> f(x,s(c(y)),c(z))
 f(c(x),x,y) -> c(y)
 g(x,y) -> x
 g(x,y) -> y

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.19

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.19

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
     , f(s(x), y, z) -> f(x, s(c(y)), c(z))
     , f(c(x), x, y) -> c(y)
     , g(x, y) -> x
     , g(x, y) -> y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
              , 2: f^#(s(x), y, z) -> c_1(f^#(x, s(c(y)), c(z)))
              , 3: f^#(c(x), x, y) -> c_2()
              , 4: g^#(x, y) -> c_3()
              , 5: g^#(x, y) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{2}                                                   [     inherited      ]
                |   |
                |   `->{3}                                               [         NA         ]
                |
                `->{3}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
                  , f^#(c(x), x, y) -> c_2()
                  , f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                  , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                  , f(c(x), x, y) -> c(y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [7]
                              [0 0 0]      [0 0 0]      [7]
                              [0 0 0]      [0 0 0]      [7]
                c_3() = [0]
                        [3]
                        [3]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [7]
                              [0 0 0]      [0 0 0]      [7]
                              [0 0 0]      [0 0 0]      [7]
                c_4() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
              , 2: f^#(s(x), y, z) -> c_1(f^#(x, s(c(y)), c(z)))
              , 3: f^#(c(x), x, y) -> c_2()
              , 4: g^#(x, y) -> c_3()
              , 5: g^#(x, y) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{2}                                                   [     inherited      ]
                |   |
                |   `->{3}                                               [         NA         ]
                |
                `->{3}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
                  , f^#(c(x), x, y) -> c_2()
                  , f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                  , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                  , f(c(x), x, y) -> c(y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [7]
                              [0 0]      [0 0]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [7]
                              [0 0]      [0 0]      [7]
                c_4() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
              , 2: f^#(s(x), y, z) -> c_1(f^#(x, s(c(y)), c(z)))
              , 3: f^#(c(x), x, y) -> c_2()
              , 4: g^#(x, y) -> c_3()
              , 5: g^#(x, y) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{2}                                                   [     inherited      ]
                |   |
                |   `->{3}                                               [         NA         ]
                |
                `->{3}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
                  , f^#(c(x), x, y) -> c_2()
                  , f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                  , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                  , f(c(x), x, y) -> c(y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0] x1 + [0] x2 + [7]
                c_3() = [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0] x1 + [0] x2 + [7]
                c_4() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.19

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.19

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
     , f(s(x), y, z) -> f(x, s(c(y)), c(z))
     , f(c(x), x, y) -> c(y)
     , g(x, y) -> x
     , g(x, y) -> y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
              , 2: f^#(s(x), y, z) -> c_1(f^#(x, s(c(y)), c(z)))
              , 3: f^#(c(x), x, y) -> c_2(y)
              , 4: g^#(x, y) -> c_3(x)
              , 5: g^#(x, y) -> c_4(y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{2}                                                   [     inherited      ]
                |   |
                |   `->{3}                                               [         NA         ]
                |
                `->{3}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
                  , f^#(c(x), x, y) -> c_2(y)
                  , f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                  , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                  , f(c(x), x, y) -> c(y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_3(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [7 7 7] x1 + [0 0 0] x2 + [7]
                              [7 7 7]      [0 0 0]      [7]
                              [7 7 7]      [0 0 0]      [7]
                c_3(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_4(y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0 0] x1 + [7 7 7] x2 + [7]
                              [0 0 0]      [7 7 7]      [7]
                              [0 0 0]      [7 7 7]      [7]
                c_4(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
              , 2: f^#(s(x), y, z) -> c_1(f^#(x, s(c(y)), c(z)))
              , 3: f^#(c(x), x, y) -> c_2(y)
              , 4: g^#(x, y) -> c_3(x)
              , 5: g^#(x, y) -> c_4(y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{2}                                                   [     inherited      ]
                |   |
                |   `->{3}                                               [         NA         ]
                |
                `->{3}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
                  , f^#(c(x), x, y) -> c_2(y)
                  , f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                  , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                  , f(c(x), x, y) -> c(y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_3(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [7 7] x1 + [0 0] x2 + [7]
                              [7 7]      [0 0]      [7]
                c_3(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_4(y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0] x1 + [7 7] x2 + [7]
                              [0 0]      [7 7]      [7]
                c_4(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
              , 2: f^#(s(x), y, z) -> c_1(f^#(x, s(c(y)), c(z)))
              , 3: f^#(c(x), x, y) -> c_2(y)
              , 4: g^#(x, y) -> c_3(x)
              , 5: g^#(x, y) -> c_4(y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{2}                                                   [     inherited      ]
                |   |
                |   `->{3}                                               [         NA         ]
                |
                `->{3}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {1}->{2}->{3}.
           
           * Path {1}->{2}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                , f(c(x), x, y) -> c(y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(x, c(x), c(y)) -> c_0(f^#(y, y, f(y, x, y)))
                  , f^#(c(x), x, y) -> c_2(y)
                  , f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
                  , f(s(x), y, z) -> f(x, s(c(y)), c(z))
                  , f(c(x), x, y) -> c(y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                g^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_3(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [7] x1 + [0] x2 + [7]
                c_3(x1) = [1] x1 + [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(c) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                g^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x, y) -> c_4(y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0] x1 + [7] x2 + [7]
                c_4(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.