Tool CaT
stdout:
YES(?,O(n^1))
Problem:
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0())) -> g(f(s(0())))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {4,3}
transitions:
g1(15) -> 16*
f1(5) -> 6*
f1(14) -> 15*
f1(11) -> 12*
s1(13) -> 14*
01() -> 13*
f2(23) -> 24*
f0(2) -> 3*
f0(1) -> 3*
s0(2) -> 1*
s0(1) -> 1*
g0(2) -> 4*
g0(1) -> 4*
00() -> 2*
1 -> 11*
2 -> 5*
6 -> 12,3
12 -> 3*
13 -> 23*
16 -> 4*
24 -> 15*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(f(x)) -> f(x)
, f(s(x)) -> f(x)
, g(s(0())) -> g(f(s(0())))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(f(x)) -> f(x)
, f(s(x)) -> f(x)
, g(s(0())) -> g(f(s(0())))}
Proof Output:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(2) -> 1
, f_1(4) -> 3
, f_2(5) -> 3
, s_0(2) -> 2
, s_1(5) -> 4
, g_0(2) -> 1
, g_1(3) -> 1
, 0_0() -> 2
, 0_1() -> 5}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(f(x)) -> f(x)
, f(s(x)) -> f(x)
, g(s(0())) -> g(f(s(0())))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(f(x)) -> f(x)
, f(s(x)) -> f(x)
, g(s(0())) -> g(f(s(0())))}
Proof Output:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(2) -> 1
, f_1(4) -> 3
, f_2(5) -> 3
, s_0(2) -> 2
, s_1(5) -> 4
, g_0(2) -> 1
, g_1(3) -> 1
, 0_0() -> 2
, 0_1() -> 5}