Problem AG01 innermost 4.23

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.23

stdout:

MAYBE

Problem:
 quot(0(),s(y),s(z)) -> 0()
 quot(s(x),s(y),z) -> quot(x,y,z)
 plus(0(),y) -> y
 plus(s(x),y) -> s(plus(x,y))
 quot(x,0(),s(z)) -> s(quot(x,plus(z,s(0())),s(z)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.23

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.23

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  quot(0(), s(y), s(z)) -> 0()
     , quot(s(x), s(y), z) -> quot(x, y, z)
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , quot(x, 0(), s(z)) -> s(quot(x, plus(z, s(0())), s(z)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: quot^#(0(), s(y), s(z)) -> c_0()
              , 2: quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
              , 3: plus^#(0(), y) -> c_2()
              , 4: plus^#(s(x), y) -> c_3(plus^#(x, y))
              , 5: quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^3))    ]
                |
                `->{3}                                                   [   YES(?,O(n^3))    ]
             
             ->{2,5}                                                     [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2,5}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {1}, Uargs(plus) = {},
                 Uargs(quot^#) = {2}, Uargs(c_1) = {1}, Uargs(plus^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [2]
                               [0 0 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                quot^#(x1, x2, x3) = [0 0 0] x1 + [3 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                quot^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                 [2 2 2]      [4 4 4]      [0]
                                 [2 0 2]      [4 4 4]      [0]
                c_3(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {4}->{3}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                quot^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_2()}
               Weak Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 0] x1 + [0]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 3 2] x1 + [0 0 0] x2 + [0]
                                 [2 2 2]      [4 4 0]      [0]
                                 [2 2 2]      [4 4 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: quot^#(0(), s(y), s(z)) -> c_0()
              , 2: quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
              , 3: plus^#(0(), y) -> c_2()
              , 4: plus^#(s(x), y) -> c_3(plus^#(x, y))
              , 5: quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2,5}                                                     [       MAYBE        ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2,5}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
                  , quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,5}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {1}, Uargs(plus) = {},
                 Uargs(quot^#) = {2}, Uargs(c_1) = {1}, Uargs(plus^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                plus(x1, x2) = [2 0] x1 + [3 3] x2 + [2]
                               [0 0]      [3 3]      [0]
                quot^#(x1, x2, x3) = [0 0] x1 + [3 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                quot^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                plus^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                 [4 5]      [4 4]      [0]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                quot^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_2()}
               Weak Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 0]      [2]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [4]
                                 [2 2]      [0 4]      [0]
                c_2() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: quot^#(0(), s(y), s(z)) -> c_0()
              , 2: quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
              , 3: plus^#(0(), y) -> c_2()
              , 4: plus^#(s(x), y) -> c_3(plus^#(x, y))
              , 5: quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2,5}                                                     [       MAYBE        ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2,5}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
                  , quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,5}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {1}, Uargs(plus) = {},
                 Uargs(quot^#) = {2}, Uargs(c_1) = {1}, Uargs(plus^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [3]
                s(x1) = [1] x1 + [1]
                plus(x1, x2) = [2] x1 + [3] x2 + [0]
                quot^#(x1, x2, x3) = [0] x1 + [3] x2 + [0] x3 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                quot^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                quot^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_2()}
               Weak Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [4]
                c_2() = [1]
                c_3(x1) = [1] x1 + [4]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.23

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.23

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  quot(0(), s(y), s(z)) -> 0()
     , quot(s(x), s(y), z) -> quot(x, y, z)
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , quot(x, 0(), s(z)) -> s(quot(x, plus(z, s(0())), s(z)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: quot^#(0(), s(y), s(z)) -> c_0()
              , 2: quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
              , 3: plus^#(0(), y) -> c_2(y)
              , 4: plus^#(s(x), y) -> c_3(plus^#(x, y))
              , 5: quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^3))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{2,5}                                                     [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2,5}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {1}, Uargs(plus) = {},
                 Uargs(quot^#) = {2}, Uargs(c_1) = {1}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [2]
                               [0 0 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                quot^#(x1, x2, x3) = [0 0 0] x1 + [3 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                quot^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                 [2 2 2]      [4 4 4]      [0]
                                 [2 0 2]      [4 4 4]      [0]
                c_3(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                quot^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_2(y)}
               Weak Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 2 3] x1 + [0]
                        [0 0 3]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [2]
                                 [0 2 2]      [0 0 0]      [0]
                                 [4 0 0]      [4 0 4]      [4]
                c_2(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [5]
                          [0 0 0]      [7]
                          [2 2 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: quot^#(0(), s(y), s(z)) -> c_0()
              , 2: quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
              , 3: plus^#(0(), y) -> c_2(y)
              , 4: plus^#(s(x), y) -> c_3(plus^#(x, y))
              , 5: quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2,5}                                                     [       MAYBE        ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2,5}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
                  , quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,5}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {1}, Uargs(plus) = {},
                 Uargs(quot^#) = {2}, Uargs(c_1) = {1}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                plus(x1, x2) = [2 0] x1 + [3 3] x2 + [2]
                               [0 0]      [3 3]      [0]
                quot^#(x1, x2, x3) = [0 0] x1 + [3 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                quot^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                plus^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                 [4 5]      [4 4]      [0]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                quot^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_2(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_2(y)}
               Weak Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                plus^#(x1, x2) = [2 0] x1 + [0 0] x2 + [4]
                                 [2 2]      [4 4]      [0]
                c_2(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [3]
                          [0 0]      [4]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: quot^#(0(), s(y), s(z)) -> c_0()
              , 2: quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
              , 3: plus^#(0(), y) -> c_2(y)
              , 4: plus^#(s(x), y) -> c_3(plus^#(x, y))
              , 5: quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2,5}                                                     [       MAYBE        ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2,5}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(x), s(y), z) -> c_1(quot^#(x, y, z))
                  , quot^#(x, 0(), s(z)) -> c_4(quot^#(x, plus(z, s(0())), s(z)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,5}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {1}, Uargs(plus) = {},
                 Uargs(quot^#) = {2}, Uargs(c_1) = {1}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [3]
                s(x1) = [1] x1 + [1]
                plus(x1, x2) = [2] x1 + [3] x2 + [0]
                quot^#(x1, x2, x3) = [0] x1 + [3] x2 + [0] x3 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                quot^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(quot) = {}, Uargs(s) = {}, Uargs(plus) = {},
                 Uargs(quot^#) = {}, Uargs(c_1) = {}, Uargs(plus^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                quot(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                quot^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_2(y)}
               Weak Rules: {plus^#(s(x), y) -> c_3(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                plus^#(x1, x2) = [3] x1 + [7] x2 + [2]
                c_2(x1) = [1] x1 + [1]
                c_3(x1) = [1] x1 + [5]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.