Problem AG01 innermost 4.26

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.26

stdout:

MAYBE

Problem:
 p(0()) -> 0()
 p(s(x)) -> x
 le(0(),y) -> true()
 le(s(x),0()) -> false()
 le(s(x),s(y)) -> le(x,y)
 minus(x,y) -> if(le(x,y),x,y)
 if(true(),x,y) -> 0()
 if(false(),x,y) -> s(minus(p(x),y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.26

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.26

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  p(0()) -> 0()
     , p(s(x)) -> x
     , le(0(), y) -> true()
     , le(s(x), 0()) -> false()
     , le(s(x), s(y)) -> le(x, y)
     , minus(x, y) -> if(le(x, y), x, y)
     , if(true(), x, y) -> 0()
     , if(false(), x, y) -> s(minus(p(x), y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1()
              , 3: le^#(0(), y) -> c_2()
              , 4: le^#(s(x), 0()) -> c_3()
              , 5: le^#(s(x), s(y)) -> c_4(le^#(x, y))
              , 6: minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
              , 7: if^#(true(), x, y) -> c_6()
              , 8: if^#(false(), x, y) -> c_7(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,8}                                                     [       MAYBE        ]
                |
                `->{7}                                                   [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^3))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_5) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                p^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_5) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                p^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                le^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_4(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_2()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 1]      [0]
                le^#(x1, x2) = [2 2 2] x1 + [2 0 0] x2 + [0]
                               [2 2 2]      [0 0 4]      [0]
                               [2 2 2]      [0 0 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {5}->{4}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_3()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 1]      [2]
                le^#(x1, x2) = [2 2 0] x1 + [0 1 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [0]
                               [0 1 0]      [0 2 4]      [0]
                c_3() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [6]
           
           * Path {6,8}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_7(minus^#(p(x), y))
                  , p(0()) -> 0()
                  , p(s(x)) -> x
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,8}->{7}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {1}, Uargs(c_5) = {1}, Uargs(if^#) = {1},
                 Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0 0] x1 + [0]
                        [1 1 0]      [2]
                        [0 0 1]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                le(x1, x2) = [2 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1()
              , 3: le^#(0(), y) -> c_2()
              , 4: le^#(s(x), 0()) -> c_3()
              , 5: le^#(s(x), s(y)) -> c_4(le^#(x, y))
              , 6: minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
              , 7: if^#(true(), x, y) -> c_6()
              , 8: if^#(false(), x, y) -> c_7(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,8}                                                     [       MAYBE        ]
                |
                `->{7}                                                   [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_5) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_5) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                le^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                le^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_4(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_2()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                le^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                               [4 1]      [2 0]      [0]
                c_2() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_3()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [1 4] x1 + [2]
                        [0 0]      [0]
                le^#(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                               [0 0]      [0 2]      [0]
                c_3() = [1]
                        [0]
                c_4(x1) = [1 2] x1 + [3]
                          [0 0]      [0]
           
           * Path {6,8}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_7(minus^#(p(x), y))
                  , p(0()) -> 0()
                  , p(s(x)) -> x
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,8}->{7}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {1}, Uargs(c_5) = {1}, Uargs(if^#) = {1},
                 Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 1] x1 + [0]
                        [2 0]      [1]
                0() = [0]
                      [1]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [2]
                le(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [3]
                true() = [0]
                         [1]
                false() = [1]
                          [1]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1()
              , 3: le^#(0(), y) -> c_2()
              , 4: le^#(s(x), 0()) -> c_3()
              , 5: le^#(s(x), s(y)) -> c_4(le^#(x, y))
              , 6: minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
              , 7: if^#(true(), x, y) -> c_6()
              , 8: if^#(false(), x, y) -> c_7(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,8}                                                     [       MAYBE        ]
                |
                `->{7}                                                   [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_5) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_5) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [7]
                p^#(x1) = [1] x1 + [7]
                c_1() = [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                le^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_2()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_2() = [1]
                c_4(x1) = [1] x1 + [2]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_3()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3() = [1]
                c_4(x1) = [1] x1 + [7]
           
           * Path {6,8}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_7(minus^#(p(x), y))
                  , p(0()) -> 0()
                  , p(s(x)) -> x
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,8}->{7}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(le^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {1}, Uargs(c_5) = {1}, Uargs(if^#) = {1},
                 Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [3] x1 + [3]
                0() = [0]
                s(x1) = [1] x1 + [2]
                le(x1, x2) = [2] x1 + [0] x2 + [2]
                true() = [1]
                false() = [1]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_5(x1) = [1] x1 + [0]
                if^#(x1, x2, x3) = [3] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.26

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAG01 innermost 4.26

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  p(0()) -> 0()
     , p(s(x)) -> x
     , le(0(), y) -> true()
     , le(s(x), 0()) -> false()
     , le(s(x), s(y)) -> le(x, y)
     , minus(x, y) -> if(le(x, y), x, y)
     , if(true(), x, y) -> 0()
     , if(false(), x, y) -> s(minus(p(x), y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1(x)
              , 3: le^#(0(), y) -> c_2()
              , 4: le^#(s(x), 0()) -> c_3()
              , 5: le^#(s(x), s(y)) -> c_4(le^#(x, y))
              , 6: minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
              , 7: if^#(true(), x, y) -> c_6()
              , 8: if^#(false(), x, y) -> c_7(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,8}                                                     [       MAYBE        ]
                |
                `->{7}                                                   [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^3))    ]
             
             ->{2}                                                       [   YES(?,O(n^3))    ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                p^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 3] x1 + [0]
                        [0 1 1]      [0]
                        [0 0 1]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [1 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [2]
                p^#(x1) = [2 2 2] x1 + [3]
                          [2 2 2]      [3]
                          [2 2 2]      [3]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [1]
                          [0 0 0]      [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                le^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_4(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_2()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 1]      [0]
                le^#(x1, x2) = [2 2 2] x1 + [2 0 0] x2 + [0]
                               [2 2 2]      [0 0 4]      [0]
                               [2 2 2]      [0 0 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {5}->{4}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_3()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 1]      [2]
                le^#(x1, x2) = [2 2 0] x1 + [0 1 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [0]
                               [0 1 0]      [0 2 4]      [0]
                c_3() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [6]
           
           * Path {6,8}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_7(minus^#(p(x), y))
                  , p(0()) -> 0()
                  , p(s(x)) -> x
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,8}->{7}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {1}, Uargs(c_5) = {1},
                 Uargs(if^#) = {1, 2}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                le(x1, x2) = [2 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3) = [3 0 0] x1 + [3 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1(x)
              , 3: le^#(0(), y) -> c_2()
              , 4: le^#(s(x), 0()) -> c_3()
              , 5: le^#(s(x), s(y)) -> c_4(le^#(x, y))
              , 6: minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
              , 7: if^#(true(), x, y) -> c_6()
              , 8: if^#(false(), x, y) -> c_7(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,8}                                                     [       MAYBE        ]
                |
                `->{7}                                                   [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 1] x1 + [0]
                        [0 1]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [2]
                p^#(x1) = [2 2] x1 + [7]
                          [2 0]      [7]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [1]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                le^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_4(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_2()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                le^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                               [4 1]      [2 0]      [0]
                c_2() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_3()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [1 4] x1 + [2]
                        [0 0]      [0]
                le^#(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                               [0 0]      [0 2]      [0]
                c_3() = [1]
                        [0]
                c_4(x1) = [1 2] x1 + [3]
                          [0 0]      [0]
           
           * Path {6,8}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_7(minus^#(p(x), y))
                  , p(0()) -> 0()
                  , p(s(x)) -> x
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,8}->{7}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {1}, Uargs(c_5) = {1},
                 Uargs(if^#) = {1, 2}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0] x1 + [0]
                        [0 1]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                le(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [3]
                true() = [1]
                         [1]
                false() = [1]
                          [1]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1(x)
              , 3: le^#(0(), y) -> c_2()
              , 4: le^#(s(x), 0()) -> c_3()
              , 5: le^#(s(x), s(y)) -> c_4(le^#(x, y))
              , 6: minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
              , 7: if^#(true(), x, y) -> c_6()
              , 8: if^#(false(), x, y) -> c_7(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,8}                                                     [       MAYBE        ]
                |
                `->{7}                                                   [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [3] x1 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [7]
                p^#(x1) = [1] x1 + [7]
                c_1(x1) = [1] x1 + [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                le^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_2()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_2() = [1]
                c_4(x1) = [1] x1 + [2]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {1}, Uargs(minus^#) = {}, Uargs(c_5) = {},
                 Uargs(if^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_3()}
               Weak Rules: {le^#(s(x), s(y)) -> c_4(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3() = [1]
                c_4(x1) = [1] x1 + [7]
           
           * Path {6,8}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_5(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_7(minus^#(p(x), y))
                  , p(0()) -> 0()
                  , p(s(x)) -> x
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,8}->{7}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> 0()
                , p(s(x)) -> x
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(le^#) = {},
                 Uargs(c_4) = {}, Uargs(minus^#) = {1}, Uargs(c_5) = {1},
                 Uargs(if^#) = {1, 2}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [3] x1 + [3]
                0() = [0]
                s(x1) = [1] x1 + [2]
                le(x1, x2) = [2] x1 + [0] x2 + [1]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_5(x1) = [1] x1 + [0]
                if^#(x1, x2, x3) = [3] x1 + [3] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.