Tool CaT
stdout:
YES(?,O(n^1))
Problem:
f(c(s(x),y)) -> f(c(x,s(y)))
g(c(x,s(y))) -> g(c(s(x),y))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {4,3}
transitions:
g1(9) -> 4*
c1(7,1) -> 9*
c1(2,7) -> 8*
c1(1,7) -> 8*
c1(7,2) -> 9*
s1(7) -> 7*
s1(2) -> 7*
s1(1) -> 7*
f1(8) -> 3*
f0(2) -> 3*
f0(1) -> 3*
c0(1,2) -> 1*
c0(2,1) -> 1*
c0(1,1) -> 1*
c0(2,2) -> 1*
s0(2) -> 2*
s0(1) -> 2*
g0(2) -> 4*
g0(1) -> 4*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(c(s(x), y)) -> f(c(x, s(y)))
, g(c(x, s(y))) -> g(c(s(x), y))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(c(s(x), y)) -> f(c(x, s(y)))
, g(c(x, s(y))) -> g(c(s(x), y))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(3) -> 1
, c_0(2, 2) -> 2
, c_1(2, 4) -> 3
, c_1(4, 2) -> 5
, s_0(2) -> 2
, s_1(2) -> 4
, s_1(4) -> 4
, g_0(2) -> 1
, g_1(5) -> 1}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(c(s(x), y)) -> f(c(x, s(y)))
, g(c(x, s(y))) -> g(c(s(x), y))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(c(s(x), y)) -> f(c(x, s(y)))
, g(c(x, s(y))) -> g(c(s(x), y))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(3) -> 1
, c_0(2, 2) -> 2
, c_1(2, 4) -> 3
, c_1(4, 2) -> 5
, s_0(2) -> 2
, s_1(2) -> 4
, s_1(4) -> 4
, g_0(2) -> 1
, g_1(5) -> 1}