Problem AProVE 06 factorial2

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 06 factorial2

stdout:

MAYBE

Problem:
 plus(0(),x) -> x
 plus(s(x),y) -> s(plus(x,y))
 times(0(),y) -> 0()
 times(s(x),y) -> plus(y,times(x,y))
 p(s(x)) -> x
 p(0()) -> 0()
 minus(x,0()) -> x
 minus(0(),x) -> 0()
 minus(x,s(y)) -> p(minus(x,y))
 isZero(0()) -> true()
 isZero(s(x)) -> false()
 facIter(x,y) -> if(isZero(x),minus(x,s(0())),y,times(y,x))
 if(true(),x,y,z) -> y
 if(false(),x,y,z) -> facIter(x,z)
 factorial(x) -> facIter(x,s(0()))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 06 factorial2

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 06 factorial2

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  plus(0(), x) -> x
     , plus(s(x), y) -> s(plus(x, y))
     , times(0(), y) -> 0()
     , times(s(x), y) -> plus(y, times(x, y))
     , p(s(x)) -> x
     , p(0()) -> 0()
     , minus(x, 0()) -> x
     , minus(0(), x) -> 0()
     , minus(x, s(y)) -> p(minus(x, y))
     , isZero(0()) -> true()
     , isZero(s(x)) -> false()
     , facIter(x, y) -> if(isZero(x), minus(x, s(0())), y, times(y, x))
     , if(true(), x, y, z) -> y
     , if(false(), x, y, z) -> facIter(x, z)
     , factorial(x) -> facIter(x, s(0()))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), x) -> c_0()
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: times^#(0(), y) -> c_2()
              , 4: times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
              , 5: p^#(s(x)) -> c_4()
              , 6: p^#(0()) -> c_5()
              , 7: minus^#(x, 0()) -> c_6()
              , 8: minus^#(0(), x) -> c_7()
              , 9: minus^#(x, s(y)) -> c_8(p^#(minus(x, y)))
              , 10: isZero^#(0()) -> c_9()
              , 11: isZero^#(s(x)) -> c_10()
              , 12: facIter^#(x, y) ->
                    c_11(if^#(isZero(x), minus(x, s(0())), y, times(y, x)))
              , 13: if^#(true(), x, y, z) -> c_12()
              , 14: if^#(false(), x, y, z) -> c_13(facIter^#(x, z))
              , 15: factorial^#(x) -> c_14(facIter^#(x, s(0())))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [     inherited      ]
                |
                `->{12,14}                                               [     inherited      ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [    YES(?,O(1))     ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                times^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                  [2 2 0]      [0 0 0]      [3]
                                  [2 2 2]      [0 0 0]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
                  , plus^#(0(), x) -> c_0()
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), x) -> x
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{2}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                minus^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                  [0 0 0]      [2 2 0]      [3]
                                  [0 0 0]      [2 2 2]      [3]
                c_6() = [0]
                        [1]
                        [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                minus^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                  [2 2 0]      [0 0 0]      [3]
                                  [2 2 2]      [0 0 0]      [3]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [1]
                      [2]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 2]      [0]
                        [0 0 1]      [2]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [2 0 0] x1 + [0 1 2] x2 + [0]
                                [0 2 0]      [0 0 0]      [0]
                                [0 0 1]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [1 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [3 3 3] x1 + [0 1 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                minus(x1, x2) = [2 0 0] x1 + [1 0 0] x2 + [0]
                                [0 2 0]      [1 0 0]      [0]
                                [3 0 2]      [1 0 0]      [2]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                minus(x1, x2) = [2 0 0] x1 + [1 0 0] x2 + [0]
                                [0 2 0]      [1 0 0]      [0]
                                [3 0 2]      [1 0 0]      [2]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                isZero^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_9() = [0]
                        [1]
                        [1]
           
           * Path {11}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_10()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                isZero^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_10() = [0]
                         [1]
                         [1]
           
           * Path {15}: inherited
             --------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), x) -> c_0()
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: times^#(0(), y) -> c_2()
              , 4: times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
              , 5: p^#(s(x)) -> c_4()
              , 6: p^#(0()) -> c_5()
              , 7: minus^#(x, 0()) -> c_6()
              , 8: minus^#(0(), x) -> c_7()
              , 9: minus^#(x, s(y)) -> c_8(p^#(minus(x, y)))
              , 10: isZero^#(0()) -> c_9()
              , 11: isZero^#(s(x)) -> c_10()
              , 12: facIter^#(x, y) ->
                    c_11(if^#(isZero(x), minus(x, s(0())), y, times(y, x)))
              , 13: if^#(true(), x, y, z) -> c_12()
              , 14: if^#(false(), x, y, z) -> c_13(facIter^#(x, z))
              , 15: factorial^#(x) -> c_14(facIter^#(x, s(0())))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [     inherited      ]
                |
                `->{12,14}                                               [     inherited      ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [    YES(?,O(1))     ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                times^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                  [2 2]      [0 0]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
                  , plus^#(0(), x) -> c_0()
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), x) -> x
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{2}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                  [0 0]      [2 2]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                  [2 2]      [0 0]      [7]
                c_7() = [0]
                        [1]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [1]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [2]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [1 0] x1 + [1]
                        [1 0]      [1]
                minus(x1, x2) = [2 2] x1 + [1 1] x2 + [0]
                                [2 2]      [1 2]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [3 3] x1 + [1 3] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 1]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                minus(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                                [0 2]      [1 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 1]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                minus(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                                [0 2]      [1 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_9() = [0]
                        [1]
           
           * Path {11}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_10()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_10() = [0]
                         [1]
           
           * Path {15}: inherited
             --------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), x) -> c_0()
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: times^#(0(), y) -> c_2()
              , 4: times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
              , 5: p^#(s(x)) -> c_4()
              , 6: p^#(0()) -> c_5()
              , 7: minus^#(x, 0()) -> c_6()
              , 8: minus^#(0(), x) -> c_7()
              , 9: minus^#(x, s(y)) -> c_8(p^#(minus(x, y)))
              , 10: isZero^#(0()) -> c_9()
              , 11: isZero^#(s(x)) -> c_10()
              , 12: facIter^#(x, y) ->
                    c_11(if^#(isZero(x), minus(x, s(0())), y, times(y, x)))
              , 13: if^#(true(), x, y, z) -> c_12()
              , 14: if^#(false(), x, y, z) -> c_13(facIter^#(x, z))
              , 15: factorial^#(x) -> c_14(facIter^#(x, s(0())))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [     inherited      ]
                |
                `->{12,14}                                               [     inherited      ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [    YES(?,O(1))     ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                times^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_2() = [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
                  , plus^#(0(), x) -> c_0()
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), x) -> x
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{2}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                minus^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_6() = [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                minus^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_7() = [1]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [1] x1 + [2]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [1] x1 + [1]
                minus(x1, x2) = [2] x1 + [2] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [1]
                s(x1) = [1] x1 + [2]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [1] x1 + [1]
                minus(x1, x2) = [3] x1 + [3] x2 + [3]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {1}, Uargs(minus^#) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [1]
                s(x1) = [1] x1 + [2]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [1] x1 + [1]
                minus(x1, x2) = [3] x1 + [3] x2 + [3]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                isZero^#(x1) = [1] x1 + [7]
                c_9() = [1]
           
           * Path {11}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(times^#) = {}, Uargs(c_3) = {},
                 Uargs(p^#) = {}, Uargs(minus^#) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_13) = {}, Uargs(factorial^#) = {},
                 Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_10()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [7]
                isZero^#(x1) = [1] x1 + [7]
                c_10() = [1]
           
           * Path {15}: inherited
             --------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 06 factorial2

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 06 factorial2

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  plus(0(), x) -> x
     , plus(s(x), y) -> s(plus(x, y))
     , times(0(), y) -> 0()
     , times(s(x), y) -> plus(y, times(x, y))
     , p(s(x)) -> x
     , p(0()) -> 0()
     , minus(x, 0()) -> x
     , minus(0(), x) -> 0()
     , minus(x, s(y)) -> p(minus(x, y))
     , isZero(0()) -> true()
     , isZero(s(x)) -> false()
     , facIter(x, y) -> if(isZero(x), minus(x, s(0())), y, times(y, x))
     , if(true(), x, y, z) -> y
     , if(false(), x, y, z) -> facIter(x, z)
     , factorial(x) -> facIter(x, s(0()))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), x) -> c_0(x)
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: times^#(0(), y) -> c_2()
              , 4: times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
              , 5: p^#(s(x)) -> c_4(x)
              , 6: p^#(0()) -> c_5()
              , 7: minus^#(x, 0()) -> c_6(x)
              , 8: minus^#(0(), x) -> c_7()
              , 9: minus^#(x, s(y)) -> c_8(p^#(minus(x, y)))
              , 10: isZero^#(0()) -> c_9()
              , 11: isZero^#(s(x)) -> c_10()
              , 12: facIter^#(x, y) ->
                    c_11(if^#(isZero(x), minus(x, s(0())), y, times(y, x)))
              , 13: if^#(true(), x, y, z) -> c_12(y)
              , 14: if^#(false(), x, y, z) -> c_13(facIter^#(x, z))
              , 15: factorial^#(x) -> c_14(facIter^#(x, s(0())))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [     inherited      ]
                |
                `->{12,14}                                               [     inherited      ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [    YES(?,O(1))     ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                times^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                  [2 2 0]      [0 0 0]      [3]
                                  [2 2 2]      [0 0 0]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
                  , plus^#(0(), x) -> c_0(x)
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), x) -> x
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{2}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [2]
                minus^#(x1, x2) = [7 7 7] x1 + [2 0 2] x2 + [7]
                                  [7 7 7]      [2 0 2]      [7]
                                  [7 7 7]      [2 0 2]      [7]
                c_6(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                minus^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                  [2 2 0]      [0 0 0]      [3]
                                  [2 2 2]      [0 0 0]      [3]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [1]
                      [2]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 2]      [0]
                        [0 0 1]      [2]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                minus(x1, x2) = [2 0 0] x1 + [0 1 2] x2 + [0]
                                [0 2 0]      [0 0 0]      [0]
                                [0 0 1]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [1 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [3 3 3] x1 + [0 1 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [2]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 1]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [1 1 0]      [0]
                minus(x1, x2) = [2 0 0] x1 + [2 0 0] x2 + [0]
                                [0 2 0]      [0 0 0]      [0]
                                [2 2 2]      [2 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                minus(x1, x2) = [2 0 0] x1 + [1 0 0] x2 + [0]
                                [0 2 0]      [1 0 0]      [0]
                                [3 0 2]      [1 0 0]      [2]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                isZero^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_9() = [0]
                        [1]
                        [1]
           
           * Path {11}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                facIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                factorial(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10() = [0]
                         [0]
                         [0]
                facIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_13(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                factorial^#(x1) = [0 0 0] x1 + [0]
                                  [0 0 0]      [0]
                                  [0 0 0]      [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_10()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                isZero^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_10() = [0]
                         [1]
                         [1]
           
           * Path {15}: inherited
             --------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), x) -> c_0(x)
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: times^#(0(), y) -> c_2()
              , 4: times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
              , 5: p^#(s(x)) -> c_4(x)
              , 6: p^#(0()) -> c_5()
              , 7: minus^#(x, 0()) -> c_6(x)
              , 8: minus^#(0(), x) -> c_7()
              , 9: minus^#(x, s(y)) -> c_8(p^#(minus(x, y)))
              , 10: isZero^#(0()) -> c_9()
              , 11: isZero^#(s(x)) -> c_10()
              , 12: facIter^#(x, y) ->
                    c_11(if^#(isZero(x), minus(x, s(0())), y, times(y, x)))
              , 13: if^#(true(), x, y, z) -> c_12(y)
              , 14: if^#(false(), x, y, z) -> c_13(facIter^#(x, z))
              , 15: factorial^#(x) -> c_14(facIter^#(x, s(0())))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [     inherited      ]
                |
                `->{12,14}                                               [     inherited      ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [    YES(?,O(1))     ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                times^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                  [2 2]      [0 0]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
                  , plus^#(0(), x) -> c_0(x)
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), x) -> x
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{2}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [7 7] x1 + [2 2] x2 + [7]
                                  [7 7]      [2 2]      [3]
                c_6(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                minus^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                  [2 2]      [0 0]      [7]
                c_7() = [0]
                        [1]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [1]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [2]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [1 0] x1 + [1]
                        [1 0]      [1]
                minus(x1, x2) = [2 2] x1 + [1 1] x2 + [0]
                                [2 2]      [1 2]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [3 3]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [3 3] x1 + [1 3] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [3]
                        [0 1]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                minus(x1, x2) = [2 0] x1 + [3 0] x2 + [0]
                                [0 2]      [3 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [1 3] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 1]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                minus(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                                [0 2]      [1 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_9() = [0]
                        [1]
           
           * Path {11}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                facIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                factorial(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10() = [0]
                         [0]
                facIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                factorial^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_10()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_10() = [0]
                         [1]
           
           * Path {15}: inherited
             --------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), x) -> c_0(x)
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: times^#(0(), y) -> c_2()
              , 4: times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
              , 5: p^#(s(x)) -> c_4(x)
              , 6: p^#(0()) -> c_5()
              , 7: minus^#(x, 0()) -> c_6(x)
              , 8: minus^#(0(), x) -> c_7()
              , 9: minus^#(x, s(y)) -> c_8(p^#(minus(x, y)))
              , 10: isZero^#(0()) -> c_9()
              , 11: isZero^#(s(x)) -> c_10()
              , 12: facIter^#(x, y) ->
                    c_11(if^#(isZero(x), minus(x, s(0())), y, times(y, x)))
              , 13: if^#(true(), x, y, z) -> c_12(y)
              , 14: if^#(false(), x, y, z) -> c_13(facIter^#(x, z))
              , 15: factorial^#(x) -> c_14(facIter^#(x, s(0())))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [     inherited      ]
                |
                `->{12,14}                                               [     inherited      ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [    YES(?,O(1))     ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                times^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_2() = [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_3(plus^#(y, times(x, y)))
                  , plus^#(0(), x) -> c_0(x)
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), x) -> x
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{2}->{1}.
           
           * Path {4}->{2}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [5]
                minus^#(x1, x2) = [7] x1 + [3] x2 + [0]
                c_6(x1) = [1] x1 + [0]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(minus^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                minus^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_7() = [1]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [1] x1 + [2]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [1] x1 + [1]
                minus(x1, x2) = [2] x1 + [2] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [1] x1 + [2]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [1] x1 + [1]
                minus(x1, x2) = [2] x1 + [1] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {9}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {1},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {1}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [1]
                s(x1) = [1] x1 + [2]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [1] x1 + [1]
                minus(x1, x2) = [3] x1 + [3] x2 + [3]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                isZero^#(x1) = [1] x1 + [7]
                c_9() = [1]
           
           * Path {11}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(p) = {},
                 Uargs(minus) = {}, Uargs(isZero) = {}, Uargs(facIter) = {},
                 Uargs(if) = {}, Uargs(factorial) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(times^#) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(isZero^#) = {}, Uargs(facIter^#) = {}, Uargs(c_11) = {},
                 Uargs(if^#) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(factorial^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                isZero(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                facIter(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                factorial(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10() = [0]
                facIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                factorial^#(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_10()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [7]
                isZero^#(x1) = [1] x1 + [7]
                c_10() = [1]
           
           * Path {15}: inherited
             --------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {15}->{12,14}->{13}.
           
           * Path {15}->{12,14}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , minus(x, 0()) -> x
                , minus(0(), x) -> 0()
                , minus(x, s(y)) -> p(minus(x, y))
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , plus(0(), x) -> x
                , plus(s(x), y) -> s(plus(x, y))
                , p(s(x)) -> x
                , p(0()) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.