Problem AProVE 07 kabasci05

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 kabasci05

stdout:

MAYBE

Problem:
 min(x,0()) -> 0()
 min(0(),y) -> 0()
 min(s(x),s(y)) -> s(min(x,y))
 max(x,0()) -> x
 max(0(),y) -> y
 max(s(x),s(y)) -> s(max(x,y))
 minus(x,0()) -> x
 minus(s(x),s(y)) -> s(minus(x,y))
 gcd(s(x),s(y)) -> gcd(minus(max(x,y),min(x,transform(y))),s(min(x,y)))
 transform(x) -> s(s(x))
 transform(cons(x,y)) -> cons(cons(x,x),x)
 transform(cons(x,y)) -> y
 transform(s(x)) -> s(s(transform(x)))
 cons(x,y) -> y
 cons(x,cons(y,s(z))) -> cons(y,x)
 cons(cons(x,z),s(y)) -> transform(x)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 kabasci05

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 kabasci05

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  min(x, 0()) -> 0()
     , min(0(), y) -> 0()
     , min(s(x), s(y)) -> s(min(x, y))
     , max(x, 0()) -> x
     , max(0(), y) -> y
     , max(s(x), s(y)) -> s(max(x, y))
     , minus(x, 0()) -> x
     , minus(s(x), s(y)) -> s(minus(x, y))
     , gcd(s(x), s(y)) ->
       gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
     , transform(x) -> s(s(x))
     , transform(cons(x, y)) -> cons(cons(x, x), x)
     , transform(cons(x, y)) -> y
     , transform(s(x)) -> s(s(transform(x)))
     , cons(x, y) -> y
     , cons(x, cons(y, s(z))) -> cons(y, x)
     , cons(cons(x, z), s(y)) -> transform(x)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: min^#(x, 0()) -> c_0()
              , 2: min^#(0(), y) -> c_1()
              , 3: min^#(s(x), s(y)) -> c_2(min^#(x, y))
              , 4: max^#(x, 0()) -> c_3()
              , 5: max^#(0(), y) -> c_4()
              , 6: max^#(s(x), s(y)) -> c_5(max^#(x, y))
              , 7: minus^#(x, 0()) -> c_6()
              , 8: minus^#(s(x), s(y)) -> c_7(minus^#(x, y))
              , 9: gcd^#(s(x), s(y)) ->
                   c_8(gcd^#(minus(max(x, y), min(x, transform(y))), s(min(x, y))))
              , 10: transform^#(x) -> c_9()
              , 11: transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
              , 12: transform^#(cons(x, y)) -> c_11()
              , 13: transform^#(s(x)) -> c_12(transform^#(x))
              , 14: cons^#(x, y) -> c_13()
              , 15: cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
              , 16: cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11,16,15,13}                                             [   YES(?,O(n^1))    ]
                |
                |->{10}                                                  [   YES(?,O(n^1))    ]
                |
                |->{12}                                                  [   YES(?,O(n^1))    ]
                |
                `->{14}                                                  [   YES(?,O(n^1))    ]
             
             ->{9}                                                       [         NA         ]
             
             ->{8}                                                       [   YES(?,O(n^2))    ]
                |
                `->{7}                                                   [   YES(?,O(n^2))    ]
             
             ->{6}                                                       [   YES(?,O(n^2))    ]
                |
                |->{4}                                                   [   YES(?,O(n^2))    ]
                |
                `->{5}                                                   [   YES(?,O(n^2))    ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                min^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                [0 2]      [0 0]      [0]
                c_2(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {min^#(x, 0()) -> c_0()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                min^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                                [0 0]      [4 1]      [0]
                c_0() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {min^#(0(), y) -> c_1()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                min^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                                [4 1]      [2 0]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {6}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {1}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                max^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                [0 2]      [0 0]      [0]
                c_5(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {6}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {1}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {max^#(x, 0()) -> c_3()}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                max^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                                [0 0]      [4 1]      [0]
                c_3() = [1]
                        [0]
                c_5(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {6}->{5}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {1}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {max^#(0(), y) -> c_4()}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                max^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                                [4 1]      [2 0]      [0]
                c_4() = [1]
                        [0]
                c_5(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {8}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                minus^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                  [0 2]      [0 0]      [0]
                c_7(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {8}->{7}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                                  [0 0]      [4 1]      [0]
                c_6() = [1]
                        [0]
                c_7(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  min(x, 0()) -> 0()
                , min(0(), y) -> 0()
                , min(s(x), s(y)) -> s(min(x, y))
                , max(x, 0()) -> x
                , max(0(), y) -> y
                , max(s(x), s(y)) -> s(max(x, y))
                , minus(x, 0()) -> x
                , minus(s(x), s(y)) -> s(minus(x, y))
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))
                , cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11,16,15,13}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {},
                 Uargs(cons) = {1}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_5) = {}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [2 2] x1 + [1]
                                [2 2]      [2]
                cons(x1, x2) = [1 1] x1 + [1 0] x2 + [2]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [2 2] x1 + [0]
                                  [3 3]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))}
               Weak Rules:
                 {  cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 1]      [2]
                transform(x1) = [1 6] x1 + [2]
                                [4 1]      [6]
                cons(x1, x2) = [1 3] x1 + [1 0] x2 + [2]
                               [2 1]      [0 1]      [0]
                transform^#(x1) = [2 1] x1 + [0]
                                  [0 0]      [0]
                c_10(x1) = [2 0] x1 + [3]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 1] x1 + [0 1] x2 + [0]
                                 [0 2]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [1]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [1]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [1]
                           [0 0]      [0]
           
           * Path {11,16,15,13}->{10}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {},
                 Uargs(cons) = {1}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_5) = {}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [3 2] x1 + [2]
                                [2 2]      [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [1]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {transform^#(x) -> c_9()}
               Weak Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 1] x1 + [0]
                        [0 0]      [0]
                transform(x1) = [4 0] x1 + [0]
                                [2 2]      [0]
                cons(x1, x2) = [2 1] x1 + [1 0] x2 + [0]
                               [1 1]      [0 1]      [0]
                transform^#(x1) = [0 0] x1 + [1]
                                  [0 0]      [4]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [2]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                 [4 0]      [0 0]      [4]
                c_12(x1) = [1 0] x1 + [0]
                           [0 0]      [3]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [3]
                c_15(x1) = [1 0] x1 + [0]
                           [0 0]      [3]
           
           * Path {11,16,15,13}->{12}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {},
                 Uargs(cons) = {1}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_5) = {}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [3 2] x1 + [2]
                                [2 2]      [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [1]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {transform^#(cons(x, y)) -> c_11()}
               Weak Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                transform(x1) = [4 2] x1 + [0]
                                [6 2]      [0]
                cons(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                               [4 1]      [0 1]      [1]
                transform^#(x1) = [1 2] x1 + [0]
                                  [2 0]      [0]
                c_10(x1) = [2 0] x1 + [2]
                           [0 0]      [0]
                cons^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                 [0 0]      [6 0]      [0]
                c_11() = [1]
                         [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11,16,15,13}->{14}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {},
                 Uargs(cons) = {1}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_5) = {}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [3 2] x1 + [2]
                                [2 2]      [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [1]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {cons^#(x, y) -> c_13()}
               Weak Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                transform(x1) = [1 4] x1 + [0]
                                [0 7]      [0]
                cons(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                               [2 2]      [0 2]      [0]
                transform^#(x1) = [0 0] x1 + [1]
                                  [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                 [0 0]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: min^#(x, 0()) -> c_0()
              , 2: min^#(0(), y) -> c_1()
              , 3: min^#(s(x), s(y)) -> c_2(min^#(x, y))
              , 4: max^#(x, 0()) -> c_3()
              , 5: max^#(0(), y) -> c_4()
              , 6: max^#(s(x), s(y)) -> c_5(max^#(x, y))
              , 7: minus^#(x, 0()) -> c_6()
              , 8: minus^#(s(x), s(y)) -> c_7(minus^#(x, y))
              , 9: gcd^#(s(x), s(y)) ->
                   c_8(gcd^#(minus(max(x, y), min(x, transform(y))), s(min(x, y))))
              , 10: transform^#(x) -> c_9()
              , 11: transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
              , 12: transform^#(cons(x, y)) -> c_11()
              , 13: transform^#(s(x)) -> c_12(transform^#(x))
              , 14: cons^#(x, y) -> c_13()
              , 15: cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
              , 16: cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11,16,15,13}                                             [     inherited      ]
                |
                |->{10}                                                  [   YES(?,O(n^1))    ]
                |
                |->{12}                                                  [   YES(?,O(n^1))    ]
                |
                `->{14}                                                  [   YES(?,O(n^1))    ]
             
             ->{9}                                                       [       MAYBE        ]
             
             ->{8}                                                       [   YES(?,O(n^1))    ]
                |
                `->{7}                                                   [   YES(?,O(n^1))    ]
             
             ->{6}                                                       [   YES(?,O(n^1))    ]
                |
                |->{4}                                                   [   YES(?,O(n^1))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                min^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {min^#(x, 0()) -> c_0()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                min^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_0() = [1]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {min^#(0(), y) -> c_1()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                min^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_1() = [1]
                c_2(x1) = [1] x1 + [2]
           
           * Path {6}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {1}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                max^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_5(x1) = [1] x1 + [7]
           
           * Path {6}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {1}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {max^#(x, 0()) -> c_3()}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                max^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_3() = [1]
                c_5(x1) = [1] x1 + [7]
           
           * Path {6}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {1}, Uargs(minus^#) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {max^#(0(), y) -> c_4()}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                max^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_4() = [1]
                c_5(x1) = [1] x1 + [2]
           
           * Path {8}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_6() = [0]
                c_7(x1) = [1] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_7(x1) = [1] x1 + [7]
           
           * Path {8}->{7}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_10) = {}, Uargs(cons^#) = {}, Uargs(c_12) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [1] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_6() = [1]
                c_7(x1) = [1] x1 + [7]
           
           * Path {9}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(x, 0()) -> 0()
                , min(0(), y) -> 0()
                , min(s(x), s(y)) -> s(min(x, y))
                , max(x, 0()) -> x
                , max(0(), y) -> y
                , max(s(x), s(y)) -> s(max(x, y))
                , minus(x, 0()) -> x
                , minus(s(x), s(y)) -> s(minus(x, y))
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))
                , cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  gcd^#(s(x), s(y)) ->
                    c_8(gcd^#(minus(max(x, y), min(x, transform(y))), s(min(x, y))))
                  , min(x, 0()) -> 0()
                  , min(0(), y) -> 0()
                  , min(s(x), s(y)) -> s(min(x, y))
                  , max(x, 0()) -> x
                  , max(0(), y) -> y
                  , max(s(x), s(y)) -> s(max(x, y))
                  , minus(x, 0()) -> x
                  , minus(s(x), s(y)) -> s(minus(x, y))
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11,16,15,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {11,16,15,13}->{10}.
           
           * Path {11,16,15,13}->{10}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , transform^#(x) -> c_9()
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {1}, Uargs(transform) = {}, Uargs(cons) = {1},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [1]
                transform(x1) = [4] x1 + [4]
                cons(x1, x2) = [2] x1 + [1] x2 + [2]
                transform^#(x1) = [2] x1 + [4]
                c_9() = [1]
                c_10(x1) = [1] x1 + [0]
                cons^#(x1, x2) = [1] x1 + [1] x2 + [5]
                c_12(x1) = [1] x1 + [1]
                c_14(x1) = [1] x1 + [1]
                c_15(x1) = [1] x1 + [3]
           
           * Path {11,16,15,13}->{12}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , transform^#(cons(x, y)) -> c_11()
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {1}, Uargs(transform) = {}, Uargs(cons) = {1},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [1]
                transform(x1) = [5] x1 + [3]
                cons(x1, x2) = [3] x1 + [1] x2 + [1]
                transform^#(x1) = [2] x1 + [2]
                c_10(x1) = [1] x1 + [0]
                cons^#(x1, x2) = [1] x1 + [1] x2 + [2]
                c_11() = [1]
                c_12(x1) = [1] x1 + [1]
                c_14(x1) = [1] x1 + [1]
                c_15(x1) = [1] x1 + [1]
           
           * Path {11,16,15,13}->{14}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons^#(x, y) -> c_13()
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {1}, Uargs(transform) = {}, Uargs(cons) = {1},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {1},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                transform(x1) = [4] x1 + [6]
                cons(x1, x2) = [2] x1 + [1] x2 + [2]
                transform^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                cons^#(x1, x2) = [1] x1 + [1] x2 + [1]
                c_12(x1) = [1] x1 + [3]
                c_13() = [0]
                c_14(x1) = [1] x1 + [1]
                c_15(x1) = [1] x1 + [3]
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 kabasci05

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 kabasci05

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  min(x, 0()) -> 0()
     , min(0(), y) -> 0()
     , min(s(x), s(y)) -> s(min(x, y))
     , max(x, 0()) -> x
     , max(0(), y) -> y
     , max(s(x), s(y)) -> s(max(x, y))
     , minus(x, 0()) -> x
     , minus(s(x), s(y)) -> s(minus(x, y))
     , gcd(s(x), s(y)) ->
       gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
     , transform(x) -> s(s(x))
     , transform(cons(x, y)) -> cons(cons(x, x), x)
     , transform(cons(x, y)) -> y
     , transform(s(x)) -> s(s(transform(x)))
     , cons(x, y) -> y
     , cons(x, cons(y, s(z))) -> cons(y, x)
     , cons(cons(x, z), s(y)) -> transform(x)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: min^#(x, 0()) -> c_0()
              , 2: min^#(0(), y) -> c_1()
              , 3: min^#(s(x), s(y)) -> c_2(min^#(x, y))
              , 4: max^#(x, 0()) -> c_3(x)
              , 5: max^#(0(), y) -> c_4(y)
              , 6: max^#(s(x), s(y)) -> c_5(max^#(x, y))
              , 7: minus^#(x, 0()) -> c_6(x)
              , 8: minus^#(s(x), s(y)) -> c_7(minus^#(x, y))
              , 9: gcd^#(s(x), s(y)) ->
                   c_8(gcd^#(minus(max(x, y), min(x, transform(y))), s(min(x, y))))
              , 10: transform^#(x) -> c_9(x)
              , 11: transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
              , 12: transform^#(cons(x, y)) -> c_11(y)
              , 13: transform^#(s(x)) -> c_12(transform^#(x))
              , 14: cons^#(x, y) -> c_13(y)
              , 15: cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
              , 16: cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11,16,15,13}                                             [   YES(?,O(n^1))    ]
                |
                |->{10}                                                  [   YES(?,O(n^1))    ]
                |
                |->{12}                                                  [   YES(?,O(n^1))    ]
                |
                `->{14}                                                  [   YES(?,O(n^1))    ]
             
             ->{9}                                                       [         NA         ]
             
             ->{8}                                                       [   YES(?,O(n^2))    ]
                |
                `->{7}                                                   [   YES(?,O(n^2))    ]
             
             ->{6}                                                       [   YES(?,O(n^2))    ]
                |
                |->{4}                                                   [   YES(?,O(n^2))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                min^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                [0 2]      [0 0]      [0]
                c_2(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {min^#(x, 0()) -> c_0()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                min^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                                [0 0]      [4 1]      [0]
                c_0() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {min^#(0(), y) -> c_1()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                min^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                                [4 1]      [2 0]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {6}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                max^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                [0 2]      [0 0]      [0]
                c_5(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {6}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {max^#(x, 0()) -> c_3(x)}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_3) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                max^#(x1, x2) = [2 2] x1 + [0 2] x2 + [0]
                                [4 1]      [3 2]      [0]
                c_3(x1) = [0 0] x1 + [1]
                          [0 1]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [2 0]      [0]
           
           * Path {6}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {max^#(0(), y) -> c_4(y)}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                max^#(x1, x2) = [0 2] x1 + [0 0] x2 + [4]
                                [0 2]      [0 1]      [0]
                c_4(x1) = [0 0] x1 + [1]
                          [0 1]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {8}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                minus^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                  [0 2]      [0 0]      [0]
                c_7(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {8}->{7}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                minus^#(x1, x2) = [2 2] x1 + [0 2] x2 + [0]
                                  [4 1]      [3 2]      [0]
                c_6(x1) = [0 0] x1 + [1]
                          [0 1]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [2 0]      [0]
           
           * Path {9}: NA
             ------------
             
             The usable rules for this path are:
             
               {  min(x, 0()) -> 0()
                , min(0(), y) -> 0()
                , min(s(x), s(y)) -> s(min(x, y))
                , max(x, 0()) -> x
                , max(0(), y) -> y
                , max(s(x), s(y)) -> s(max(x, y))
                , minus(x, 0()) -> x
                , minus(s(x), s(y)) -> s(minus(x, y))
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))
                , cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11,16,15,13}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {1},
                 Uargs(cons) = {1, 2}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {1}, Uargs(c_9) = {}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_11) = {}, Uargs(c_12) = {1},
                 Uargs(c_13) = {}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [2 2] x1 + [1]
                                [2 2]      [2]
                cons(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [2 2] x1 + [0]
                                  [3 3]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))}
               Weak Rules:
                 {  cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_12) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 1]      [2]
                transform(x1) = [1 6] x1 + [2]
                                [4 1]      [6]
                cons(x1, x2) = [1 3] x1 + [1 0] x2 + [2]
                               [2 1]      [0 1]      [0]
                transform^#(x1) = [2 1] x1 + [0]
                                  [0 0]      [0]
                c_10(x1) = [2 0] x1 + [3]
                           [0 0]      [0]
                cons^#(x1, x2) = [0 1] x1 + [0 1] x2 + [0]
                                 [0 2]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [1]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [1]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [1]
                           [0 0]      [0]
           
           * Path {11,16,15,13}->{10}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {1},
                 Uargs(cons) = {1, 2}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_11) = {}, Uargs(c_12) = {1},
                 Uargs(c_13) = {}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [2 2] x1 + [1]
                                [2 2]      [2]
                cons(x1, x2) = [1 1] x1 + [1 0] x2 + [2]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [3 3] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {transform^#(x) -> c_9(x)}
               Weak Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_9) = {1}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {}, Uargs(c_12) = {1}, Uargs(c_14) = {1},
                 Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                transform(x1) = [2 5] x1 + [4]
                                [1 4]      [0]
                cons(x1, x2) = [1 4] x1 + [1 0] x2 + [2]
                               [1 1]      [0 1]      [0]
                transform^#(x1) = [1 0] x1 + [4]
                                  [0 0]      [4]
                c_9(x1) = [1 0] x1 + [1]
                          [0 0]      [0]
                c_10(x1) = [1 0] x1 + [2]
                           [0 0]      [4]
                cons^#(x1, x2) = [0 1] x1 + [0 1] x2 + [4]
                                 [0 0]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 0]      [2]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11,16,15,13}->{12}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {1},
                 Uargs(cons) = {1, 2}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {1}, Uargs(c_9) = {}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_11) = {1}, Uargs(c_12) = {1},
                 Uargs(c_13) = {}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [3 1] x1 + [1]
                                [2 3]      [2]
                cons(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                               [2 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [1 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {transform^#(cons(x, y)) -> c_11(y)}
               Weak Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_12) = {1}, Uargs(c_14) = {1},
                 Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                transform(x1) = [6 2] x1 + [0]
                                [3 2]      [0]
                cons(x1, x2) = [2 2] x1 + [2 2] x2 + [0]
                               [1 1]      [1 1]      [0]
                transform^#(x1) = [2 1] x1 + [1]
                                  [2 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [1 1] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11,16,15,13}->{14}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {},
                 Uargs(minus) = {}, Uargs(gcd) = {}, Uargs(transform) = {1},
                 Uargs(cons) = {1, 2}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(max^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}, Uargs(minus^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}, Uargs(gcd^#) = {}, Uargs(c_8) = {},
                 Uargs(transform^#) = {1}, Uargs(c_9) = {}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_11) = {}, Uargs(c_12) = {1},
                 Uargs(c_13) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                max(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                gcd(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                transform(x1) = [2 2] x1 + [1]
                                [2 2]      [2]
                cons(x1, x2) = [1 1] x1 + [1 0] x2 + [2]
                               [1 1]      [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                max^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gcd^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                transform^#(x1) = [3 0] x1 + [0]
                                  [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                cons^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {cons^#(x, y) -> c_13(y)}
               Weak Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(transform^#) = {}, Uargs(c_10) = {1}, Uargs(cons^#) = {},
                 Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1},
                 Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                transform(x1) = [2 2] x1 + [0]
                                [3 5]      [4]
                cons(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                               [1 2]      [0 2]      [2]
                transform^#(x1) = [1 3] x1 + [0]
                                  [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                cons^#(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                                 [7 1]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [3]
                           [0 0]      [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [1 0] x1 + [3]
                           [0 0]      [2]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: min^#(x, 0()) -> c_0()
              , 2: min^#(0(), y) -> c_1()
              , 3: min^#(s(x), s(y)) -> c_2(min^#(x, y))
              , 4: max^#(x, 0()) -> c_3(x)
              , 5: max^#(0(), y) -> c_4(y)
              , 6: max^#(s(x), s(y)) -> c_5(max^#(x, y))
              , 7: minus^#(x, 0()) -> c_6(x)
              , 8: minus^#(s(x), s(y)) -> c_7(minus^#(x, y))
              , 9: gcd^#(s(x), s(y)) ->
                   c_8(gcd^#(minus(max(x, y), min(x, transform(y))), s(min(x, y))))
              , 10: transform^#(x) -> c_9(x)
              , 11: transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
              , 12: transform^#(cons(x, y)) -> c_11(y)
              , 13: transform^#(s(x)) -> c_12(transform^#(x))
              , 14: cons^#(x, y) -> c_13(y)
              , 15: cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
              , 16: cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11,16,15,13}                                             [     inherited      ]
                |
                |->{10}                                                  [   YES(?,O(n^1))    ]
                |
                |->{12}                                                  [   YES(?,O(n^1))    ]
                |
                `->{14}                                                  [   YES(?,O(n^1))    ]
             
             ->{9}                                                       [       MAYBE        ]
             
             ->{8}                                                       [   YES(?,O(n^1))    ]
                |
                `->{7}                                                   [   YES(?,O(n^1))    ]
             
             ->{6}                                                       [   YES(?,O(n^1))    ]
                |
                |->{4}                                                   [   YES(?,O(n^1))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                min^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {min^#(x, 0()) -> c_0()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                min^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_0() = [1]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {1}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {min^#(0(), y) -> c_1()}
               Weak Rules: {min^#(s(x), s(y)) -> c_2(min^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                min^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_1() = [1]
                c_2(x1) = [1] x1 + [2]
           
           * Path {6}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                max^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_5(x1) = [1] x1 + [7]
           
           * Path {6}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {max^#(x, 0()) -> c_3(x)}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_3) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                max^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_3(x1) = [0] x1 + [1]
                c_5(x1) = [1] x1 + [5]
           
           * Path {6}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {max^#(0(), y) -> c_4(y)}
               Weak Rules: {max^#(s(x), s(y)) -> c_5(max^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(max^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                max^#(x1, x2) = [2] x1 + [2] x2 + [1]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
           
           * Path {8}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [1] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_7(x1) = [1] x1 + [7]
           
           * Path {8}->{7}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(min) = {}, Uargs(s) = {}, Uargs(max) = {}, Uargs(minus) = {},
                 Uargs(gcd) = {}, Uargs(transform) = {}, Uargs(cons) = {},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(max^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(minus^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {1},
                 Uargs(gcd^#) = {}, Uargs(c_8) = {}, Uargs(transform^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(cons^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                max(x1, x2) = [0] x1 + [0] x2 + [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                gcd(x1, x2) = [0] x1 + [0] x2 + [0]
                transform(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                max^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7(x1) = [1] x1 + [0]
                gcd^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                transform^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_6(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_7(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_6(x1) = [0] x1 + [1]
                c_7(x1) = [1] x1 + [5]
           
           * Path {9}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(x, 0()) -> 0()
                , min(0(), y) -> 0()
                , min(s(x), s(y)) -> s(min(x, y))
                , max(x, 0()) -> x
                , max(0(), y) -> y
                , max(s(x), s(y)) -> s(max(x, y))
                , minus(x, 0()) -> x
                , minus(s(x), s(y)) -> s(minus(x, y))
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))
                , cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  gcd^#(s(x), s(y)) ->
                    c_8(gcd^#(minus(max(x, y), min(x, transform(y))), s(min(x, y))))
                  , min(x, 0()) -> 0()
                  , min(0(), y) -> 0()
                  , min(s(x), s(y)) -> s(min(x, y))
                  , max(x, 0()) -> x
                  , max(0(), y) -> y
                  , max(s(x), s(y)) -> s(max(x, y))
                  , minus(x, 0()) -> x
                  , minus(s(x), s(y)) -> s(minus(x, y))
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11,16,15,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {11,16,15,13}->{10}.
           
           * Path {11,16,15,13}->{10}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , transform^#(x) -> c_9(x)
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {1}, Uargs(transform) = {1}, Uargs(cons) = {1, 2},
                 Uargs(transform^#) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_12) = {1}, Uargs(c_14) = {1},
                 Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [1]
                transform(x1) = [4] x1 + [3]
                cons(x1, x2) = [2] x1 + [1] x2 + [3]
                transform^#(x1) = [2] x1 + [1]
                c_9(x1) = [1] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                cons^#(x1, x2) = [1] x1 + [1] x2 + [2]
                c_12(x1) = [1] x1 + [0]
                c_14(x1) = [1] x1 + [1]
                c_15(x1) = [1] x1 + [4]
           
           * Path {11,16,15,13}->{12}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , transform^#(cons(x, y)) -> c_11(y)
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {1}, Uargs(transform) = {1}, Uargs(cons) = {1, 2},
                 Uargs(transform^#) = {1}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_11) = {1}, Uargs(c_12) = {1},
                 Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [1]
                transform(x1) = [4] x1 + [3]
                cons(x1, x2) = [2] x1 + [1] x2 + [1]
                transform^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_11(x1) = [2] x1 + [1]
                c_12(x1) = [1] x1 + [1]
                c_14(x1) = [1] x1 + [1]
                c_15(x1) = [1] x1 + [1]
           
           * Path {11,16,15,13}->{14}: YES(?,O(n^1))
             ---------------------------------------
             
             The usable rules for this path are:
             
               {  cons(x, y) -> y
                , cons(x, cons(y, s(z))) -> cons(y, x)
                , cons(cons(x, z), s(y)) -> transform(x)
                , transform(x) -> s(s(x))
                , transform(cons(x, y)) -> cons(cons(x, x), x)
                , transform(cons(x, y)) -> y
                , transform(s(x)) -> s(s(transform(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  transform^#(cons(x, y)) -> c_10(cons^#(cons(x, x), x))
                  , cons^#(cons(x, z), s(y)) -> c_15(transform^#(x))
                  , cons^#(x, cons(y, s(z))) -> c_14(cons^#(y, x))
                  , transform^#(s(x)) -> c_12(transform^#(x))
                  , cons^#(x, y) -> c_13(y)
                  , cons(x, y) -> y
                  , cons(x, cons(y, s(z))) -> cons(y, x)
                  , cons(cons(x, z), s(y)) -> transform(x)
                  , transform(x) -> s(s(x))
                  , transform(cons(x, y)) -> cons(cons(x, x), x)
                  , transform(cons(x, y)) -> y
                  , transform(s(x)) -> s(s(transform(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {1}, Uargs(transform) = {1}, Uargs(cons) = {1, 2},
                 Uargs(transform^#) = {1}, Uargs(c_10) = {1},
                 Uargs(cons^#) = {1, 2}, Uargs(c_12) = {1}, Uargs(c_13) = {1},
                 Uargs(c_14) = {1}, Uargs(c_15) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [1]
                transform(x1) = [5] x1 + [4]
                cons(x1, x2) = [3] x1 + [1] x2 + [2]
                transform^#(x1) = [2] x1 + [2]
                c_10(x1) = [1] x1 + [0]
                cons^#(x1, x2) = [1] x1 + [1] x2 + [1]
                c_12(x1) = [1] x1 + [1]
                c_13(x1) = [1] x1 + [0]
                c_14(x1) = [1] x1 + [1]
                c_15(x1) = [1] x1 + [1]
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.