Problem AProVE 07 thiemann03

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann03

stdout:

MAYBE

Problem:
 null(nil()) -> true()
 null(add(n,x)) -> false()
 tail(add(n,x)) -> x
 tail(nil()) -> nil()
 head(add(n,x)) -> n
 app(nil(),y) -> y
 app(add(n,x),y) -> add(n,app(x,y))
 reverse(nil()) -> nil()
 reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
 shuffle(x) -> shuff(x,nil())
 shuff(x,y) -> if(null(x),x,y,app(y,add(head(x),nil())))
 if(true(),x,y,z) -> y
 if(false(),x,y,z) -> shuff(reverse(tail(x)),z)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann03

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann03

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  null(nil()) -> true()
     , null(add(n, x)) -> false()
     , tail(add(n, x)) -> x
     , tail(nil()) -> nil()
     , head(add(n, x)) -> n
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(x) -> shuff(x, nil())
     , shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil())))
     , if(true(), x, y, z) -> y
     , if(false(), x, y, z) -> shuff(reverse(tail(x)), z)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: null^#(nil()) -> c_0()
              , 2: null^#(add(n, x)) -> c_1()
              , 3: tail^#(add(n, x)) -> c_2()
              , 4: tail^#(nil()) -> c_3()
              , 5: head^#(add(n, x)) -> c_4()
              , 6: app^#(nil(), y) -> c_5()
              , 7: app^#(add(n, x), y) -> c_6(app^#(x, y))
              , 8: reverse^#(nil()) -> c_7()
              , 9: reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
              , 10: shuffle^#(x) -> c_9(shuff^#(x, nil()))
              , 11: shuff^#(x, y) ->
                    c_10(if^#(null(x), x, y, app(y, add(head(x), nil()))))
              , 12: if^#(true(), x, y, z) -> c_11()
              , 13: if^#(false(), x, y, z) -> c_12(shuff^#(reverse(tail(x)), z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [     inherited      ]
                |
                `->{11,13}                                               [     inherited      ]
                    |
                    `->{12}                                              [         NA         ]
             
             ->{9}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {null^#(nil()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                null^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {null^#(add(n, x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                              [0 0 0]      [0 0 0]      [2]
                              [0 0 0]      [0 0 0]      [2]
                null^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(add(n, x)) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                              [0 0 0]      [0 0 0]      [2]
                              [0 0 0]      [0 0 0]      [2]
                tail^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                tail^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(add(n, x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                              [0 0 0]      [0 0 0]      [2]
                              [0 0 0]      [0 0 0]      [2]
                head^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                reverse^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {9}: inherited
             -------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
                  , app^#(nil(), y) -> c_5()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {9}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}->{12}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  null(nil()) -> true()
                , null(add(n, x)) -> false()
                , tail(add(n, x)) -> x
                , tail(nil()) -> nil()
                , head(add(n, x)) -> n
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))
                , reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: null^#(nil()) -> c_0()
              , 2: null^#(add(n, x)) -> c_1()
              , 3: tail^#(add(n, x)) -> c_2()
              , 4: tail^#(nil()) -> c_3()
              , 5: head^#(add(n, x)) -> c_4()
              , 6: app^#(nil(), y) -> c_5()
              , 7: app^#(add(n, x), y) -> c_6(app^#(x, y))
              , 8: reverse^#(nil()) -> c_7()
              , 9: reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
              , 10: shuffle^#(x) -> c_9(shuff^#(x, nil()))
              , 11: shuff^#(x, y) ->
                    c_10(if^#(null(x), x, y, app(y, add(head(x), nil()))))
              , 12: if^#(true(), x, y, z) -> c_11()
              , 13: if^#(false(), x, y, z) -> c_12(shuff^#(reverse(tail(x)), z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [     inherited      ]
                |
                `->{11,13}                                               [     inherited      ]
                    |
                    `->{12}                                              [         NA         ]
             
             ->{9}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {null^#(nil()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                null^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {null^#(add(n, x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                              [0 0]      [0 0]      [2]
                null^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(add(n, x)) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                              [0 0]      [0 0]      [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(add(n, x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                              [0 0]      [0 0]      [2]
                head^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                reverse^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_7() = [0]
                        [1]
           
           * Path {9}: inherited
             -------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
                  , app^#(nil(), y) -> c_5()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {9}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}->{12}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  null(nil()) -> true()
                , null(add(n, x)) -> false()
                , tail(add(n, x)) -> x
                , tail(nil()) -> nil()
                , head(add(n, x)) -> n
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))
                , reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: null^#(nil()) -> c_0()
              , 2: null^#(add(n, x)) -> c_1()
              , 3: tail^#(add(n, x)) -> c_2()
              , 4: tail^#(nil()) -> c_3()
              , 5: head^#(add(n, x)) -> c_4()
              , 6: app^#(nil(), y) -> c_5()
              , 7: app^#(add(n, x), y) -> c_6(app^#(x, y))
              , 8: reverse^#(nil()) -> c_7()
              , 9: reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
              , 10: shuffle^#(x) -> c_9(shuff^#(x, nil()))
              , 11: shuff^#(x, y) ->
                    c_10(if^#(null(x), x, y, app(y, add(head(x), nil()))))
              , 12: if^#(true(), x, y, z) -> c_11()
              , 13: if^#(false(), x, y, z) -> c_12(shuff^#(reverse(tail(x)), z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [     inherited      ]
                |
                `->{11,13}                                               [     inherited      ]
                    |
                    `->{12}                                              [         NA         ]
             
             ->{9}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {null^#(nil()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                null^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {null^#(add(n, x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0] x1 + [0] x2 + [7]
                null^#(x1) = [1] x1 + [7]
                c_1() = [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(add(n, x)) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0] x1 + [0] x2 + [7]
                tail^#(x1) = [1] x1 + [7]
                c_2() = [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                tail^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(add(n, x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0] x1 + [0] x2 + [7]
                head^#(x1) = [1] x1 + [7]
                c_4() = [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(head^#) = {},
                 Uargs(app^#) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11() = [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                reverse^#(x1) = [1] x1 + [7]
                c_7() = [1]
           
           * Path {9}: inherited
             -------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
                  , app^#(nil(), y) -> c_5()
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {9}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}->{12}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  null(nil()) -> true()
                , null(add(n, x)) -> false()
                , tail(add(n, x)) -> x
                , tail(nil()) -> nil()
                , head(add(n, x)) -> n
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))
                , reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann03

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann03

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  null(nil()) -> true()
     , null(add(n, x)) -> false()
     , tail(add(n, x)) -> x
     , tail(nil()) -> nil()
     , head(add(n, x)) -> n
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , reverse(nil()) -> nil()
     , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
     , shuffle(x) -> shuff(x, nil())
     , shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil())))
     , if(true(), x, y, z) -> y
     , if(false(), x, y, z) -> shuff(reverse(tail(x)), z)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: null^#(nil()) -> c_0()
              , 2: null^#(add(n, x)) -> c_1()
              , 3: tail^#(add(n, x)) -> c_2(x)
              , 4: tail^#(nil()) -> c_3()
              , 5: head^#(add(n, x)) -> c_4(n)
              , 6: app^#(nil(), y) -> c_5(y)
              , 7: app^#(add(n, x), y) -> c_6(n, app^#(x, y))
              , 8: reverse^#(nil()) -> c_7()
              , 9: reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
              , 10: shuffle^#(x) -> c_9(shuff^#(x, nil()))
              , 11: shuff^#(x, y) ->
                    c_10(if^#(null(x), x, y, app(y, add(head(x), nil()))))
              , 12: if^#(true(), x, y, z) -> c_11(y)
              , 13: if^#(false(), x, y, z) -> c_12(shuff^#(reverse(tail(x)), z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [     inherited      ]
                |
                `->{11,13}                                               [     inherited      ]
                    |
                    `->{12}                                              [         NA         ]
             
             ->{9}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^3))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^3))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {null^#(nil()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                null^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {null^#(add(n, x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                              [0 0 0]      [0 0 0]      [2]
                              [0 0 0]      [0 0 0]      [2]
                null^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [1 3 3] x1 + [0 0 0] x2 + [0]
                              [0 1 1]      [0 0 0]      [0]
                              [0 0 1]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [1 3 3] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(add(n, x)) -> c_2(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                              [0 0 0]      [0 0 2]      [2]
                              [0 0 0]      [0 0 0]      [2]
                tail^#(x1) = [2 2 2] x1 + [3]
                             [2 2 2]      [3]
                             [2 2 2]      [3]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [1]
                          [0 0 0]      [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                tail^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [1 3 3] x1 + [0 0 0] x2 + [0]
                              [0 1 1]      [0 0 0]      [0]
                              [0 0 1]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [1 3 3] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(add(n, x)) -> c_4(n)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(head^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [1 2 2] x1 + [0 0 0] x2 + [2]
                              [0 0 2]      [0 0 0]      [2]
                              [0 0 0]      [0 0 0]      [2]
                head^#(x1) = [2 2 2] x1 + [3]
                             [2 2 2]      [3]
                             [2 2 2]      [3]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [1]
                          [0 0 0]      [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                true() = [0]
                         [0]
                         [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuffle(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                shuff(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                null^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                reverse^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuffle^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                shuff^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                reverse^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {9}: inherited
             -------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
                  , app^#(nil(), y) -> c_5(y)
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {9}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}->{12}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  null(nil()) -> true()
                , null(add(n, x)) -> false()
                , tail(add(n, x)) -> x
                , tail(nil()) -> nil()
                , head(add(n, x)) -> n
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))
                , reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: null^#(nil()) -> c_0()
              , 2: null^#(add(n, x)) -> c_1()
              , 3: tail^#(add(n, x)) -> c_2(x)
              , 4: tail^#(nil()) -> c_3()
              , 5: head^#(add(n, x)) -> c_4(n)
              , 6: app^#(nil(), y) -> c_5(y)
              , 7: app^#(add(n, x), y) -> c_6(n, app^#(x, y))
              , 8: reverse^#(nil()) -> c_7()
              , 9: reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
              , 10: shuffle^#(x) -> c_9(shuff^#(x, nil()))
              , 11: shuff^#(x, y) ->
                    c_10(if^#(null(x), x, y, app(y, add(head(x), nil()))))
              , 12: if^#(true(), x, y, z) -> c_11(y)
              , 13: if^#(false(), x, y, z) -> c_12(shuff^#(reverse(tail(x)), z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [     inherited      ]
                |
                `->{11,13}                                               [     inherited      ]
                    |
                    `->{12}                                              [         NA         ]
             
             ->{9}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {null^#(nil()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                null^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {null^#(add(n, x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                              [0 0]      [0 0]      [2]
                null^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                              [0 1]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(add(n, x)) -> c_2(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                              [0 0]      [0 0]      [2]
                tail^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                              [0 1]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(add(n, x)) -> c_4(n)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(head^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [1 2] x1 + [0 0] x2 + [2]
                              [0 0]      [0 0]      [2]
                head^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuffle(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                shuff(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                null^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                reverse^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuffle^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                shuff^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                reverse^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_7() = [0]
                        [1]
           
           * Path {9}: inherited
             -------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
                  , app^#(nil(), y) -> c_5(y)
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {9}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}->{12}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  null(nil()) -> true()
                , null(add(n, x)) -> false()
                , tail(add(n, x)) -> x
                , tail(nil()) -> nil()
                , head(add(n, x)) -> n
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))
                , reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: null^#(nil()) -> c_0()
              , 2: null^#(add(n, x)) -> c_1()
              , 3: tail^#(add(n, x)) -> c_2(x)
              , 4: tail^#(nil()) -> c_3()
              , 5: head^#(add(n, x)) -> c_4(n)
              , 6: app^#(nil(), y) -> c_5(y)
              , 7: app^#(add(n, x), y) -> c_6(n, app^#(x, y))
              , 8: reverse^#(nil()) -> c_7()
              , 9: reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
              , 10: shuffle^#(x) -> c_9(shuff^#(x, nil()))
              , 11: shuff^#(x, y) ->
                    c_10(if^#(null(x), x, y, app(y, add(head(x), nil()))))
              , 12: if^#(true(), x, y, z) -> c_11(y)
              , 13: if^#(false(), x, y, z) -> c_12(shuff^#(reverse(tail(x)), z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [     inherited      ]
                |
                `->{11,13}                                               [     inherited      ]
                    |
                    `->{12}                                              [         NA         ]
             
             ->{9}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {null^#(nil()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                null^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {null^#(add(n, x)) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(null^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0] x1 + [0] x2 + [7]
                null^#(x1) = [1] x1 + [7]
                c_1() = [1]
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [1] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [3] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(add(n, x)) -> c_2(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [0] x1 + [1] x2 + [7]
                tail^#(x1) = [1] x1 + [7]
                c_2(x1) = [1] x1 + [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                tail^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [1] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                head^#(x1) = [3] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(add(n, x)) -> c_4(n)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(head^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2) = [1] x1 + [0] x2 + [7]
                head^#(x1) = [1] x1 + [7]
                c_4(x1) = [1] x1 + [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(null) = {}, Uargs(add) = {}, Uargs(tail) = {},
                 Uargs(head) = {}, Uargs(app) = {}, Uargs(reverse) = {},
                 Uargs(shuffle) = {}, Uargs(shuff) = {}, Uargs(if) = {},
                 Uargs(null^#) = {}, Uargs(tail^#) = {}, Uargs(c_2) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(app^#) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(reverse^#) = {},
                 Uargs(c_8) = {}, Uargs(shuffle^#) = {}, Uargs(c_9) = {},
                 Uargs(shuff^#) = {}, Uargs(c_10) = {}, Uargs(if^#) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                null(x1) = [0] x1 + [0]
                nil() = [0]
                true() = [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                tail(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse(x1) = [0] x1 + [0]
                shuffle(x1) = [0] x1 + [0]
                shuff(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                null^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1, x2) = [0] x1 + [0] x2 + [0]
                reverse^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                shuffle^#(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                shuff^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_10(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_11(x1) = [0] x1 + [0]
                c_12(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {reverse^#(nil()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(reverse^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                reverse^#(x1) = [1] x1 + [7]
                c_7() = [1]
           
           * Path {9}: inherited
             -------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  reverse^#(add(n, x)) -> c_8(app^#(reverse(x), add(n, nil())))
                  , app^#(nil(), y) -> c_5(y)
                  , reverse(nil()) -> nil()
                  , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                  , app(nil(), y) -> y
                  , app(add(n, x), y) -> add(n, app(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {9}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {9}->{7}->{6}.
           
           * Path {9}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: inherited
             --------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {10}->{11,13}->{12}.
           
           * Path {10}->{11,13}->{12}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  null(nil()) -> true()
                , null(add(n, x)) -> false()
                , tail(add(n, x)) -> x
                , tail(nil()) -> nil()
                , head(add(n, x)) -> n
                , app(nil(), y) -> y
                , app(add(n, x), y) -> add(n, app(x, y))
                , reverse(nil()) -> nil()
                , reverse(add(n, x)) -> app(reverse(x), add(n, nil()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.