Problem AProVE 07 thiemann24

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann24

stdout:

MAYBE

Problem:
 lt(0(),s(x)) -> true()
 lt(x,0()) -> false()
 lt(s(x),s(y)) -> lt(x,y)
 times(0(),y) -> 0()
 times(s(x),y) -> plus(y,times(x,y))
 plus(0(),y) -> y
 plus(s(x),y) -> s(plus(x,y))
 fac(x) -> loop(x,s(0()),s(0()))
 loop(x,c,y) -> if(lt(x,c),x,c,y)
 if(false(),x,c,y) -> loop(x,s(c),times(y,s(c)))
 if(true(),x,c,y) -> y

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann24

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann24

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  lt(0(), s(x)) -> true()
     , lt(x, 0()) -> false()
     , lt(s(x), s(y)) -> lt(x, y)
     , times(0(), y) -> 0()
     , times(s(x), y) -> plus(y, times(x, y))
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , fac(x) -> loop(x, s(0()), s(0()))
     , loop(x, c, y) -> if(lt(x, c), x, c, y)
     , if(false(), x, c, y) -> loop(x, s(c), times(y, s(c)))
     , if(true(), x, c, y) -> y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: lt^#(0(), s(x)) -> c_0()
              , 2: lt^#(x, 0()) -> c_1()
              , 3: lt^#(s(x), s(y)) -> c_2(lt^#(x, y))
              , 4: times^#(0(), y) -> c_3()
              , 5: times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
              , 6: plus^#(0(), y) -> c_5()
              , 7: plus^#(s(x), y) -> c_6(plus^#(x, y))
              , 8: fac^#(x) -> c_7(loop^#(x, s(0()), s(0())))
              , 9: loop^#(x, c, y) -> c_8(if^#(lt(x, c), x, c, y))
              , 10: if^#(false(), x, c, y) ->
                    c_9(loop^#(x, s(c), times(y, s(c))))
              , 11: if^#(true(), x, c, y) -> c_10()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                `->{9,10}                                                [     inherited      ]
                    |
                    `->{11}                                              [         NA         ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                lt^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_2(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(x)) -> c_0()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                lt^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [3]
                          [2 0 0]      [2]
                          [0 0 0]      [2]
           
           * Path {3}->{2}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_1()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                lt^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                times^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                  [2 2 0]      [0 0 0]      [3]
                                  [2 2 2]      [0 0 0]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
                  , plus^#(0(), y) -> c_5()
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}->{11}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  lt(0(), s(x)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)
                , times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: lt^#(0(), s(x)) -> c_0()
              , 2: lt^#(x, 0()) -> c_1()
              , 3: lt^#(s(x), s(y)) -> c_2(lt^#(x, y))
              , 4: times^#(0(), y) -> c_3()
              , 5: times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
              , 6: plus^#(0(), y) -> c_5()
              , 7: plus^#(s(x), y) -> c_6(plus^#(x, y))
              , 8: fac^#(x) -> c_7(loop^#(x, s(0()), s(0())))
              , 9: loop^#(x, c, y) -> c_8(if^#(lt(x, c), x, c, y))
              , 10: if^#(false(), x, c, y) ->
                    c_9(loop^#(x, s(c), times(y, s(c))))
              , 11: if^#(true(), x, c, y) -> c_10()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                `->{9,10}                                                [     inherited      ]
                    |
                    `->{11}                                              [         NA         ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                lt^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_2(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(x)) -> c_0()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                lt^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_0() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_1()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                lt^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                times^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                  [2 2]      [0 0]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
                  , plus^#(0(), y) -> c_5()
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}->{11}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  lt(0(), s(x)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)
                , times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: lt^#(0(), s(x)) -> c_0()
              , 2: lt^#(x, 0()) -> c_1()
              , 3: lt^#(s(x), s(y)) -> c_2(lt^#(x, y))
              , 4: times^#(0(), y) -> c_3()
              , 5: times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
              , 6: plus^#(0(), y) -> c_5()
              , 7: plus^#(s(x), y) -> c_6(plus^#(x, y))
              , 8: fac^#(x) -> c_7(loop^#(x, s(0()), s(0())))
              , 9: loop^#(x, c, y) -> c_8(if^#(lt(x, c), x, c, y))
              , 10: if^#(false(), x, c, y) ->
                    c_9(loop^#(x, s(c), times(y, s(c))))
              , 11: if^#(true(), x, c, y) -> c_10()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                `->{9,10}                                                [     inherited      ]
                    |
                    `->{11}                                              [         NA         ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(x)) -> c_0()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_0() = [1]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_1()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_1() = [1]
                c_2(x1) = [1] x1 + [7]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_6) = {},
                 Uargs(fac^#) = {}, Uargs(c_7) = {}, Uargs(loop^#) = {},
                 Uargs(c_8) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                times^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_3() = [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
                  , plus^#(0(), y) -> c_5()
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}->{11}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  lt(0(), s(x)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)
                , times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann24

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann24

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  lt(0(), s(x)) -> true()
     , lt(x, 0()) -> false()
     , lt(s(x), s(y)) -> lt(x, y)
     , times(0(), y) -> 0()
     , times(s(x), y) -> plus(y, times(x, y))
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , fac(x) -> loop(x, s(0()), s(0()))
     , loop(x, c, y) -> if(lt(x, c), x, c, y)
     , if(false(), x, c, y) -> loop(x, s(c), times(y, s(c)))
     , if(true(), x, c, y) -> y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: lt^#(0(), s(x)) -> c_0()
              , 2: lt^#(x, 0()) -> c_1()
              , 3: lt^#(s(x), s(y)) -> c_2(lt^#(x, y))
              , 4: times^#(0(), y) -> c_3()
              , 5: times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
              , 6: plus^#(0(), y) -> c_5(y)
              , 7: plus^#(s(x), y) -> c_6(plus^#(x, y))
              , 8: fac^#(x) -> c_7(loop^#(x, s(0()), s(0())))
              , 9: loop^#(x, c, y) -> c_8(if^#(lt(x, c), x, c, y))
              , 10: if^#(false(), x, c, y) ->
                    c_9(loop^#(x, s(c), times(y, s(c))))
              , 11: if^#(true(), x, c, y) -> c_10(y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                `->{9,10}                                                [     inherited      ]
                    |
                    `->{11}                                              [         NA         ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                lt^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_2(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(x)) -> c_0()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                lt^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [3]
                          [2 0 0]      [2]
                          [0 0 0]      [2]
           
           * Path {3}->{2}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_1()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                lt^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                loop^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                times^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                  [2 2 0]      [0 0 0]      [3]
                                  [2 2 2]      [0 0 0]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
                  , plus^#(0(), y) -> c_5(y)
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}->{11}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  lt(0(), s(x)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)
                , times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: lt^#(0(), s(x)) -> c_0()
              , 2: lt^#(x, 0()) -> c_1()
              , 3: lt^#(s(x), s(y)) -> c_2(lt^#(x, y))
              , 4: times^#(0(), y) -> c_3()
              , 5: times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
              , 6: plus^#(0(), y) -> c_5(y)
              , 7: plus^#(s(x), y) -> c_6(plus^#(x, y))
              , 8: fac^#(x) -> c_7(loop^#(x, s(0()), s(0())))
              , 9: loop^#(x, c, y) -> c_8(if^#(lt(x, c), x, c, y))
              , 10: if^#(false(), x, c, y) ->
                    c_9(loop^#(x, s(c), times(y, s(c))))
              , 11: if^#(true(), x, c, y) -> c_10(y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                `->{9,10}                                                [     inherited      ]
                    |
                    `->{11}                                              [         NA         ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                lt^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_2(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {3}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(x)) -> c_0()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                lt^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_0() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_1()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                lt^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                loop^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                times^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                  [2 2]      [0 0]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
                  , plus^#(0(), y) -> c_5(y)
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}->{11}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  lt(0(), s(x)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)
                , times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: lt^#(0(), s(x)) -> c_0()
              , 2: lt^#(x, 0()) -> c_1()
              , 3: lt^#(s(x), s(y)) -> c_2(lt^#(x, y))
              , 4: times^#(0(), y) -> c_3()
              , 5: times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
              , 6: plus^#(0(), y) -> c_5(y)
              , 7: plus^#(s(x), y) -> c_6(plus^#(x, y))
              , 8: fac^#(x) -> c_7(loop^#(x, s(0()), s(0())))
              , 9: loop^#(x, c, y) -> c_8(if^#(lt(x, c), x, c, y))
              , 10: if^#(false(), x, c, y) ->
                    c_9(loop^#(x, s(c), times(y, s(c))))
              , 11: if^#(true(), x, c, y) -> c_10(y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                `->{9,10}                                                [     inherited      ]
                    |
                    `->{11}                                              [         NA         ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{7}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(x)) -> c_0()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_0() = [1]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {1}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_1()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_2(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_1() = [1]
                c_2(x1) = [1] x1 + [7]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(lt) = {}, Uargs(s) = {}, Uargs(times) = {}, Uargs(plus) = {},
                 Uargs(fac) = {}, Uargs(loop) = {}, Uargs(if) = {},
                 Uargs(lt^#) = {}, Uargs(c_2) = {}, Uargs(times^#) = {},
                 Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(fac^#) = {}, Uargs(c_7) = {},
                 Uargs(loop^#) = {}, Uargs(c_8) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                true() = [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                fac(x1) = [0] x1 + [0]
                loop(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                loop^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {times^#(0(), y) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(times^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                times^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_3() = [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(s(x), y) -> c_4(plus^#(y, times(x, y)))
                  , plus^#(0(), y) -> c_5(y)
                  , times(0(), y) -> 0()
                  , times(s(x), y) -> plus(y, times(x, y))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{7}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{7}->{6}.
           
           * Path {5}->{7}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,10}->{11}.
           
           * Path {8}->{9,10}->{11}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  lt(0(), s(x)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)
                , times(0(), y) -> 0()
                , times(s(x), y) -> plus(y, times(x, y))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.