Problem AProVE 07 thiemann25

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann25

stdout:

MAYBE

Problem:
 plus(0(),y) -> y
 plus(s(x),y) -> s(plus(x,y))
 lt(0(),s(y)) -> true()
 lt(x,0()) -> false()
 lt(s(x),s(y)) -> lt(x,y)
 fib(x) -> fibiter(x,0(),0(),s(0()))
 fibiter(b,c,x,y) -> if(lt(c,b),b,c,x,y)
 if(false(),b,c,x,y) -> x
 if(true(),b,c,x,y) -> fibiter(b,s(c),y,plus(x,y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann25

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann25

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , lt(0(), s(y)) -> true()
     , lt(x, 0()) -> false()
     , lt(s(x), s(y)) -> lt(x, y)
     , fib(x) -> fibiter(x, 0(), 0(), s(0()))
     , fibiter(b, c, x, y) -> if(lt(c, b), b, c, x, y)
     , if(false(), b, c, x, y) -> x
     , if(true(), b, c, x, y) -> fibiter(b, s(c), y, plus(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), y) -> c_0()
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: lt^#(0(), s(y)) -> c_2()
              , 4: lt^#(x, 0()) -> c_3()
              , 5: lt^#(s(x), s(y)) -> c_4(lt^#(x, y))
              , 6: fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
              , 7: fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
              , 8: if^#(false(), b, c, x, y) -> c_7()
              , 9: if^#(true(), b, c, x, y) ->
                   c_8(fibiter^#(b, s(c), y, plus(x, y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [     inherited      ]
                |
                `->{7,9}                                                 [         NA         ]
                    |
                    `->{8}                                               [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {1}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                 [2 2 2]      [4 4 4]      [0]
                                 [2 0 2]      [4 4 4]      [0]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {2}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {1}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_0()}
               Weak Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 0] x1 + [0]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 3 2] x1 + [0 0 0] x2 + [0]
                                 [2 2 2]      [4 4 0]      [0]
                                 [2 2 2]      [4 4 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 3] x1 + [0]
                        [0 0 1]      [4]
                        [0 0 0]      [2]
                lt^#(x1, x2) = [1 1 0] x1 + [1 0 2] x2 + [0]
                               [0 0 2]      [0 0 0]      [2]
                               [1 1 0]      [4 1 0]      [0]
                c_4(x1) = [1 2 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 2 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(y)) -> c_2()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [2]
                lt^#(x1, x2) = [2 1 2] x1 + [2 0 0] x2 + [0]
                               [0 0 2]      [1 2 2]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [7]
                          [0 0 2]      [2]
                          [0 0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_3()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [3]
                lt^#(x1, x2) = [4 0 0] x1 + [3 3 0] x2 + [0]
                               [2 0 2]      [2 0 0]      [0]
                               [0 4 0]      [2 2 3]      [0]
                c_3() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [2]
                          [0 0 0]      [7]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{7,9}.
           
           * Path {6}->{7,9}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}->{7,9}->{8}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {1}, Uargs(fibiter^#) = {4},
                 Uargs(c_6) = {1}, Uargs(if^#) = {1}, Uargs(c_8) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [0]
                               [0 2 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [0]
                lt(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [3 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3, x4, x5) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), y) -> c_0()
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: lt^#(0(), s(y)) -> c_2()
              , 4: lt^#(x, 0()) -> c_3()
              , 5: lt^#(s(x), s(y)) -> c_4(lt^#(x, y))
              , 6: fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
              , 7: fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
              , 8: if^#(false(), b, c, x, y) -> c_7()
              , 9: if^#(true(), b, c, x, y) ->
                   c_8(fibiter^#(b, s(c), y, plus(x, y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [     inherited      ]
                |
                `->{7,9}                                                 [       MAYBE        ]
                    |
                    `->{8}                                               [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {1}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                plus^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                 [4 5]      [4 4]      [0]
                c_1(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {1}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_0()}
               Weak Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 0]      [2]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [4]
                                 [2 2]      [0 4]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                lt^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                               [0 0]      [0 0]      [4]
                c_4(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(y)) -> c_2()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                lt^#(x1, x2) = [2 3] x1 + [0 2] x2 + [0]
                               [0 3]      [0 1]      [0]
                c_2() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_3()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 1]      [2]
                lt^#(x1, x2) = [2 0] x1 + [2 3] x2 + [0]
                               [0 2]      [3 2]      [0]
                c_3() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{7,9}.
           
           * Path {6}->{7,9}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
                  , fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
                  , if^#(true(), b, c, x, y) ->
                    c_8(fibiter^#(b, s(c), y, plus(x, y)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))
                  , lt(0(), s(y)) -> true()
                  , lt(x, 0()) -> false()
                  , lt(s(x), s(y)) -> lt(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{7,9}->{8}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {1}, Uargs(fibiter^#) = {4},
                 Uargs(c_6) = {1}, Uargs(if^#) = {1}, Uargs(c_8) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0] x1 + [3 3] x2 + [0]
                               [2 0]      [3 3]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [3 0] x2 + [2]
                             [3 0]      [0 0]      [3]
                true() = [1]
                         [1]
                false() = [1]
                          [1]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [3 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3, x4, x5) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), y) -> c_0()
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: lt^#(0(), s(y)) -> c_2()
              , 4: lt^#(x, 0()) -> c_3()
              , 5: lt^#(s(x), s(y)) -> c_4(lt^#(x, y))
              , 6: fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
              , 7: fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
              , 8: if^#(false(), b, c, x, y) -> c_7()
              , 9: if^#(true(), b, c, x, y) ->
                   c_8(fibiter^#(b, s(c), y, plus(x, y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [     inherited      ]
                |
                `->{7,9}                                                 [       MAYBE        ]
                    |
                    `->{8}                                               [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {1}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {1}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_0()}
               Weak Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [4]
                c_0() = [1]
                c_1(x1) = [1] x1 + [4]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(y)) -> c_2()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2() = [1]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1},
                 Uargs(fib^#) = {}, Uargs(c_5) = {}, Uargs(fibiter^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_3()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_3() = [1]
                c_4(x1) = [1] x1 + [6]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{7,9}.
           
           * Path {6}->{7,9}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
                  , fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
                  , if^#(true(), b, c, x, y) ->
                    c_8(fibiter^#(b, s(c), y, plus(x, y)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))
                  , lt(0(), s(y)) -> true()
                  , lt(x, 0()) -> false()
                  , lt(s(x), s(y)) -> lt(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{7,9}->{8}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {},
                 Uargs(fib^#) = {}, Uargs(c_5) = {1}, Uargs(fibiter^#) = {4},
                 Uargs(c_6) = {1}, Uargs(if^#) = {1}, Uargs(c_8) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2] x1 + [3] x2 + [0]
                0() = [1]
                s(x1) = [1] x1 + [1]
                lt(x1, x2) = [0] x1 + [1] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [3] x4 + [0]
                c_6(x1) = [1] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann25

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann25

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , lt(0(), s(y)) -> true()
     , lt(x, 0()) -> false()
     , lt(s(x), s(y)) -> lt(x, y)
     , fib(x) -> fibiter(x, 0(), 0(), s(0()))
     , fibiter(b, c, x, y) -> if(lt(c, b), b, c, x, y)
     , if(false(), b, c, x, y) -> x
     , if(true(), b, c, x, y) -> fibiter(b, s(c), y, plus(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), y) -> c_0(y)
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: lt^#(0(), s(y)) -> c_2()
              , 4: lt^#(x, 0()) -> c_3()
              , 5: lt^#(s(x), s(y)) -> c_4(lt^#(x, y))
              , 6: fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
              , 7: fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
              , 8: if^#(false(), b, c, x, y) -> c_7(x)
              , 9: if^#(true(), b, c, x, y) ->
                   c_8(fibiter^#(b, s(c), y, plus(x, y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [     inherited      ]
                |
                `->{7,9}                                                 [         NA         ]
                    |
                    `->{8}                                               [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(lt^#) = {},
                 Uargs(c_4) = {}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                 [2 2 2]      [4 4 4]      [0]
                                 [2 0 2]      [4 4 4]      [0]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(lt^#) = {},
                 Uargs(c_4) = {}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_0(y)}
               Weak Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 2 3] x1 + [0]
                        [0 0 3]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [2]
                                 [0 2 2]      [0 0 0]      [0]
                                 [4 0 0]      [4 0 4]      [4]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [5]
                          [0 0 0]      [7]
                          [2 2 0]      [0]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 3] x1 + [0]
                        [0 0 1]      [4]
                        [0 0 0]      [2]
                lt^#(x1, x2) = [1 1 0] x1 + [1 0 2] x2 + [0]
                               [0 0 2]      [0 0 0]      [2]
                               [1 1 0]      [4 1 0]      [0]
                c_4(x1) = [1 2 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 2 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(y)) -> c_2()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [2]
                lt^#(x1, x2) = [2 1 2] x1 + [2 0 0] x2 + [0]
                               [0 0 2]      [1 2 2]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [7]
                          [0 0 2]      [2]
                          [0 0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                lt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_3()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [3]
                lt^#(x1, x2) = [4 0 0] x1 + [3 3 0] x2 + [0]
                               [2 0 2]      [2 0 0]      [0]
                               [0 4 0]      [2 2 3]      [0]
                c_3() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [2]
                          [0 0 0]      [7]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{7,9}.
           
           * Path {6}->{7,9}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}->{7,9}->{8}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {1, 2}, Uargs(s) = {1}, Uargs(lt) = {},
                 Uargs(fib) = {}, Uargs(fibiter) = {}, Uargs(if) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(lt^#) = {}, Uargs(c_4) = {}, Uargs(fib^#) = {},
                 Uargs(c_5) = {1}, Uargs(fibiter^#) = {3, 4}, Uargs(c_6) = {1},
                 Uargs(if^#) = {1, 4, 5}, Uargs(c_7) = {1}, Uargs(c_8) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [0]
                               [0 0 1]      [3 3 3]      [2]
                               [2 0 0]      [3 3 3]      [0]
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [1]
                        [0 0 1]      [2]
                lt(x1, x2) = [0 0 0] x1 + [0 2 3] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                lt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [3 0 0] x3 + [3 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3, x4, x5) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [3 0 0] x4 + [3 3 3] x5 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_8(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), y) -> c_0(y)
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: lt^#(0(), s(y)) -> c_2()
              , 4: lt^#(x, 0()) -> c_3()
              , 5: lt^#(s(x), s(y)) -> c_4(lt^#(x, y))
              , 6: fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
              , 7: fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
              , 8: if^#(false(), b, c, x, y) -> c_7(x)
              , 9: if^#(true(), b, c, x, y) ->
                   c_8(fibiter^#(b, s(c), y, plus(x, y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [     inherited      ]
                |
                `->{7,9}                                                 [       MAYBE        ]
                    |
                    `->{8}                                               [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(lt^#) = {},
                 Uargs(c_4) = {}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                plus^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                 [4 5]      [4 4]      [0]
                c_1(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(lt^#) = {},
                 Uargs(c_4) = {}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_0(y)}
               Weak Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                plus^#(x1, x2) = [2 0] x1 + [0 0] x2 + [4]
                                 [2 2]      [4 4]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [4]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                lt^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                               [0 0]      [0 0]      [4]
                c_4(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(y)) -> c_2()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                lt^#(x1, x2) = [2 3] x1 + [0 2] x2 + [0]
                               [0 3]      [0 1]      [0]
                c_2() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                lt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_3()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 1]      [2]
                lt^#(x1, x2) = [2 0] x1 + [2 3] x2 + [0]
                               [0 2]      [3 2]      [0]
                c_3() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{7,9}.
           
           * Path {6}->{7,9}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
                  , fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
                  , if^#(true(), b, c, x, y) ->
                    c_8(fibiter^#(b, s(c), y, plus(x, y)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))
                  , lt(0(), s(y)) -> true()
                  , lt(x, 0()) -> false()
                  , lt(s(x), s(y)) -> lt(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{7,9}->{8}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {1, 2}, Uargs(s) = {1}, Uargs(lt) = {},
                 Uargs(fib) = {}, Uargs(fibiter) = {}, Uargs(if) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(lt^#) = {}, Uargs(c_4) = {}, Uargs(fib^#) = {},
                 Uargs(c_5) = {1}, Uargs(fibiter^#) = {3, 4}, Uargs(c_6) = {1},
                 Uargs(if^#) = {1, 4, 5}, Uargs(c_7) = {1}, Uargs(c_8) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0] x1 + [3 3] x2 + [0]
                               [0 0]      [3 3]      [0]
                0() = [1]
                      [2]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                lt(x1, x2) = [2 1] x1 + [0 0] x2 + [1]
                             [3 0]      [0 0]      [3]
                true() = [0]
                         [0]
                false() = [0]
                          [1]
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fibiter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                lt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                fibiter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [3 0] x3 + [3 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3, x4, x5) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [3 0] x4 + [3 3] x5 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), y) -> c_0(y)
              , 2: plus^#(s(x), y) -> c_1(plus^#(x, y))
              , 3: lt^#(0(), s(y)) -> c_2()
              , 4: lt^#(x, 0()) -> c_3()
              , 5: lt^#(s(x), s(y)) -> c_4(lt^#(x, y))
              , 6: fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
              , 7: fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
              , 8: if^#(false(), b, c, x, y) -> c_7(x)
              , 9: if^#(true(), b, c, x, y) ->
                   c_8(fibiter^#(b, s(c), y, plus(x, y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [     inherited      ]
                |
                `->{7,9}                                                 [       MAYBE        ]
                    |
                    `->{8}                                               [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(lt^#) = {},
                 Uargs(c_4) = {}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(lt^#) = {},
                 Uargs(c_4) = {}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), y) -> c_0(y)}
               Weak Rules: {plus^#(s(x), y) -> c_1(plus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                plus^#(x1, x2) = [3] x1 + [7] x2 + [2]
                c_0(x1) = [1] x1 + [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(0(), s(y)) -> c_2()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2() = [1]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(lt) = {}, Uargs(fib) = {},
                 Uargs(fibiter) = {}, Uargs(if) = {}, Uargs(plus^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(lt^#) = {},
                 Uargs(c_4) = {1}, Uargs(fib^#) = {}, Uargs(c_5) = {},
                 Uargs(fibiter^#) = {}, Uargs(c_6) = {}, Uargs(if^#) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                lt(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {lt^#(x, 0()) -> c_3()}
               Weak Rules: {lt^#(s(x), s(y)) -> c_4(lt^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(lt^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_3() = [1]
                c_4(x1) = [1] x1 + [6]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{7,9}.
           
           * Path {6}->{7,9}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fib^#(x) -> c_5(fibiter^#(x, 0(), 0(), s(0())))
                  , fibiter^#(b, c, x, y) -> c_6(if^#(lt(c, b), b, c, x, y))
                  , if^#(true(), b, c, x, y) ->
                    c_8(fibiter^#(b, s(c), y, plus(x, y)))
                  , plus(0(), y) -> y
                  , plus(s(x), y) -> s(plus(x, y))
                  , lt(0(), s(y)) -> true()
                  , lt(x, 0()) -> false()
                  , lt(s(x), s(y)) -> lt(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{7,9}->{8}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(x, y))
                , lt(0(), s(y)) -> true()
                , lt(x, 0()) -> false()
                , lt(s(x), s(y)) -> lt(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {1, 2}, Uargs(s) = {1}, Uargs(lt) = {},
                 Uargs(fib) = {}, Uargs(fibiter) = {}, Uargs(if) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(lt^#) = {}, Uargs(c_4) = {}, Uargs(fib^#) = {},
                 Uargs(c_5) = {1}, Uargs(fibiter^#) = {3, 4}, Uargs(c_6) = {1},
                 Uargs(if^#) = {1, 4, 5}, Uargs(c_7) = {1}, Uargs(c_8) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2] x1 + [3] x2 + [0]
                0() = [2]
                s(x1) = [1] x1 + [2]
                lt(x1, x2) = [0] x1 + [2] x2 + [0]
                true() = [1]
                false() = [1]
                fib(x1) = [0] x1 + [0]
                fibiter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                if(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                lt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                fibiter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [3] x3 + [3] x4 + [0]
                c_6(x1) = [1] x1 + [0]
                if^#(x1, x2, x3, x4, x5) = [3] x1 + [0] x2 + [0] x3 + [3] x4 + [3] x5 + [0]
                c_7(x1) = [1] x1 + [0]
                c_8(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.