Problem AProVE 07 thiemann41

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann41

stdout:

MAYBE

Problem:
 times(x,y) -> sum(generate(x,y))
 generate(x,y) -> gen(x,y,0())
 gen(x,y,z) -> if(ge(z,x),x,y,z)
 if(true(),x,y,z) -> nil()
 if(false(),x,y,z) -> cons(y,gen(x,y,s(z)))
 sum(nil()) -> 0()
 sum(cons(0(),xs)) -> sum(xs)
 sum(cons(s(x),xs)) -> s(sum(cons(x,xs)))
 ge(x,0()) -> true()
 ge(0(),s(y)) -> false()
 ge(s(x),s(y)) -> ge(x,y)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann41

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann41

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  times(x, y) -> sum(generate(x, y))
     , generate(x, y) -> gen(x, y, 0())
     , gen(x, y, z) -> if(ge(z, x), x, y, z)
     , if(true(), x, y, z) -> nil()
     , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
     , sum(nil()) -> 0()
     , sum(cons(0(), xs)) -> sum(xs)
     , sum(cons(s(x), xs)) -> s(sum(cons(x, xs)))
     , ge(x, 0()) -> true()
     , ge(0(), s(y)) -> false()
     , ge(s(x), s(y)) -> ge(x, y)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: times^#(x, y) -> c_0(sum^#(generate(x, y)))
              , 2: generate^#(x, y) -> c_1(gen^#(x, y, 0()))
              , 3: gen^#(x, y, z) -> c_2(if^#(ge(z, x), x, y, z))
              , 4: if^#(true(), x, y, z) -> c_3()
              , 5: if^#(false(), x, y, z) -> c_4(gen^#(x, y, s(z)))
              , 6: sum^#(nil()) -> c_5()
              , 7: sum^#(cons(0(), xs)) -> c_6(sum^#(xs))
              , 8: sum^#(cons(s(x), xs)) -> c_7(sum^#(cons(x, xs)))
              , 9: ge^#(x, 0()) -> c_8()
              , 10: ge^#(0(), s(y)) -> c_9()
              , 11: ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                |->{9}                                                   [   YES(?,O(n^3))    ]
                |
                `->{10}                                                  [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3,5}                                                 [         NA         ]
                    |
                    `->{4}                                               [         NA         ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{8,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(x, y) -> c_0(sum^#(generate(x, y)))
                  , sum^#(nil()) -> c_5()
                  , generate(x, y) -> gen(x, y, 0())
                  , gen(x, y, z) -> if(ge(z, x), x, y, z)
                  , if(true(), x, y, z) -> nil()
                  , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                  , ge(x, 0()) -> true()
                  , ge(0(), s(y)) -> false()
                  , ge(s(x), s(y)) -> ge(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{8,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{8,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3,5}.
           
           * Path {2}->{3,5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{3,5}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {1},
                 Uargs(gen^#) = {}, Uargs(c_2) = {1}, Uargs(if^#) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [3]
                true() = [1]
                         [0]
                         [1]
                nil() = [0]
                        [0]
                        [0]
                false() = [1]
                          [0]
                          [1]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3, x4) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                nil() = [0]
                        [0]
                        [0]
                false() = [0]
                          [0]
                          [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_10(x1) = [1 0 0] x1 + [7]
                           [0 0 0]      [7]
                           [0 0 0]      [7]
           
           * Path {11}->{9}: YES(?,O(n^3))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                nil() = [0]
                        [0]
                        [0]
                false() = [0]
                          [0]
                          [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_8()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                ge^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_8() = [1]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [3]
                           [0 0 0]      [0]
                           [0 0 0]      [7]
           
           * Path {11}->{10}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                nil() = [0]
                        [0]
                        [0]
                false() = [0]
                          [0]
                          [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_9()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_9() = [1]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [3]
                           [2 0 0]      [2]
                           [0 0 0]      [2]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: times^#(x, y) -> c_0(sum^#(generate(x, y)))
              , 2: generate^#(x, y) -> c_1(gen^#(x, y, 0()))
              , 3: gen^#(x, y, z) -> c_2(if^#(ge(z, x), x, y, z))
              , 4: if^#(true(), x, y, z) -> c_3()
              , 5: if^#(false(), x, y, z) -> c_4(gen^#(x, y, s(z)))
              , 6: sum^#(nil()) -> c_5()
              , 7: sum^#(cons(0(), xs)) -> c_6(sum^#(xs))
              , 8: sum^#(cons(s(x), xs)) -> c_7(sum^#(cons(x, xs)))
              , 9: ge^#(x, 0()) -> c_8()
              , 10: ge^#(0(), s(y)) -> c_9()
              , 11: ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^2))    ]
                |
                |->{9}                                                   [   YES(?,O(n^2))    ]
                |
                `->{10}                                                  [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3,5}                                                 [         NA         ]
                    |
                    `->{4}                                               [         NA         ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{8,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(x, y) -> c_0(sum^#(generate(x, y)))
                  , sum^#(nil()) -> c_5()
                  , generate(x, y) -> gen(x, y, 0())
                  , gen(x, y, z) -> if(ge(z, x), x, y, z)
                  , if(true(), x, y, z) -> nil()
                  , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                  , ge(x, 0()) -> true()
                  , ge(0(), s(y)) -> false()
                  , ge(s(x), s(y)) -> ge(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{8,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{8,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3,5}.
           
           * Path {2}->{3,5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{3,5}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {1},
                 Uargs(gen^#) = {}, Uargs(c_2) = {1}, Uargs(if^#) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                             [0 0]      [0 0]      [3]
                true() = [1]
                         [1]
                nil() = [0]
                        [0]
                false() = [1]
                          [1]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                nil() = [0]
                        [0]
                false() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                ge^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_10(x1) = [1 2] x1 + [5]
                           [0 0]      [3]
           
           * Path {11}->{9}: YES(?,O(n^2))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                nil() = [0]
                        [0]
                false() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_8()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                ge^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_8() = [1]
                        [0]
                c_10(x1) = [1 0] x1 + [6]
                           [0 0]      [7]
           
           * Path {11}->{10}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                nil() = [0]
                        [0]
                false() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_9()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                ge^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_9() = [1]
                        [0]
                c_10(x1) = [1 0] x1 + [7]
                           [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: times^#(x, y) -> c_0(sum^#(generate(x, y)))
              , 2: generate^#(x, y) -> c_1(gen^#(x, y, 0()))
              , 3: gen^#(x, y, z) -> c_2(if^#(ge(z, x), x, y, z))
              , 4: if^#(true(), x, y, z) -> c_3()
              , 5: if^#(false(), x, y, z) -> c_4(gen^#(x, y, s(z)))
              , 6: sum^#(nil()) -> c_5()
              , 7: sum^#(cons(0(), xs)) -> c_6(sum^#(xs))
              , 8: sum^#(cons(s(x), xs)) -> c_7(sum^#(cons(x, xs)))
              , 9: ge^#(x, 0()) -> c_8()
              , 10: ge^#(0(), s(y)) -> c_9()
              , 11: ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                |->{9}                                                   [   YES(?,O(n^1))    ]
                |
                `->{10}                                                  [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3,5}                                                 [         NA         ]
                    |
                    `->{4}                                               [         NA         ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{8,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  times^#(x, y) -> c_0(sum^#(generate(x, y)))
                  , sum^#(nil()) -> c_5()
                  , generate(x, y) -> gen(x, y, 0())
                  , gen(x, y, z) -> if(ge(z, x), x, y, z)
                  , if(true(), x, y, z) -> nil()
                  , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                  , ge(x, 0()) -> true()
                  , ge(0(), s(y)) -> false()
                  , ge(s(x), s(y)) -> ge(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{8,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{8,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3,5}.
           
           * Path {2}->{3,5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{3,5}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {1},
                 Uargs(gen^#) = {}, Uargs(c_2) = {1}, Uargs(if^#) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [3]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [1] x1 + [1] x2 + [3]
                true() = [1]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [3]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [1] x1 + [0]
                if^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{9}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_8()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_8() = [1]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{10}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_9()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_9() = [1]
                c_10(x1) = [1] x1 + [7]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann41

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 07 thiemann41

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  times(x, y) -> sum(generate(x, y))
     , generate(x, y) -> gen(x, y, 0())
     , gen(x, y, z) -> if(ge(z, x), x, y, z)
     , if(true(), x, y, z) -> nil()
     , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
     , sum(nil()) -> 0()
     , sum(cons(0(), xs)) -> sum(xs)
     , sum(cons(s(x), xs)) -> s(sum(cons(x, xs)))
     , ge(x, 0()) -> true()
     , ge(0(), s(y)) -> false()
     , ge(s(x), s(y)) -> ge(x, y)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: times^#(x, y) -> c_0(sum^#(generate(x, y)))
              , 2: generate^#(x, y) -> c_1(gen^#(x, y, 0()))
              , 3: gen^#(x, y, z) -> c_2(if^#(ge(z, x), x, y, z))
              , 4: if^#(true(), x, y, z) -> c_3()
              , 5: if^#(false(), x, y, z) -> c_4(y, gen^#(x, y, s(z)))
              , 6: sum^#(nil()) -> c_5()
              , 7: sum^#(cons(0(), xs)) -> c_6(sum^#(xs))
              , 8: sum^#(cons(s(x), xs)) -> c_7(sum^#(cons(x, xs)))
              , 9: ge^#(x, 0()) -> c_8()
              , 10: ge^#(0(), s(y)) -> c_9()
              , 11: ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                |->{9}                                                   [   YES(?,O(n^3))    ]
                |
                `->{10}                                                  [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3,5}                                                 [         NA         ]
                    |
                    `->{4}                                               [         NA         ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{8,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(x, y) -> c_0(sum^#(generate(x, y)))
                  , sum^#(nil()) -> c_5()
                  , generate(x, y) -> gen(x, y, 0())
                  , gen(x, y, z) -> if(ge(z, x), x, y, z)
                  , if(true(), x, y, z) -> nil()
                  , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                  , ge(x, 0()) -> true()
                  , ge(0(), s(y)) -> false()
                  , ge(s(x), s(y)) -> ge(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{8,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{8,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3,5}.
           
           * Path {2}->{3,5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{3,5}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {1},
                 Uargs(gen^#) = {}, Uargs(c_2) = {1}, Uargs(if^#) = {1},
                 Uargs(c_4) = {2}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [3]
                true() = [1]
                         [0]
                         [1]
                nil() = [0]
                        [0]
                        [0]
                false() = [1]
                          [0]
                          [1]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3, x4) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                nil() = [0]
                        [0]
                        [0]
                false() = [0]
                          [0]
                          [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_10(x1) = [1 0 0] x1 + [7]
                           [0 0 0]      [7]
                           [0 0 0]      [7]
           
           * Path {11}->{9}: YES(?,O(n^3))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                nil() = [0]
                        [0]
                        [0]
                false() = [0]
                          [0]
                          [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_8()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                ge^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_8() = [1]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [3]
                           [0 0 0]      [0]
                           [0 0 0]      [7]
           
           * Path {11}->{10}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                generate(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                gen(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                nil() = [0]
                        [0]
                        [0]
                false() = [0]
                          [0]
                          [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                generate^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gen^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_9()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_9() = [1]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [3]
                           [2 0 0]      [2]
                           [0 0 0]      [2]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: times^#(x, y) -> c_0(sum^#(generate(x, y)))
              , 2: generate^#(x, y) -> c_1(gen^#(x, y, 0()))
              , 3: gen^#(x, y, z) -> c_2(if^#(ge(z, x), x, y, z))
              , 4: if^#(true(), x, y, z) -> c_3()
              , 5: if^#(false(), x, y, z) -> c_4(y, gen^#(x, y, s(z)))
              , 6: sum^#(nil()) -> c_5()
              , 7: sum^#(cons(0(), xs)) -> c_6(sum^#(xs))
              , 8: sum^#(cons(s(x), xs)) -> c_7(sum^#(cons(x, xs)))
              , 9: ge^#(x, 0()) -> c_8()
              , 10: ge^#(0(), s(y)) -> c_9()
              , 11: ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^2))    ]
                |
                |->{9}                                                   [   YES(?,O(n^2))    ]
                |
                `->{10}                                                  [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3,5}                                                 [         NA         ]
                    |
                    `->{4}                                               [         NA         ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{8,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(x, y) -> c_0(sum^#(generate(x, y)))
                  , sum^#(nil()) -> c_5()
                  , generate(x, y) -> gen(x, y, 0())
                  , gen(x, y, z) -> if(ge(z, x), x, y, z)
                  , if(true(), x, y, z) -> nil()
                  , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                  , ge(x, 0()) -> true()
                  , ge(0(), s(y)) -> false()
                  , ge(s(x), s(y)) -> ge(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{8,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{8,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3,5}.
           
           * Path {2}->{3,5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{3,5}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {1},
                 Uargs(gen^#) = {}, Uargs(c_2) = {1}, Uargs(if^#) = {1},
                 Uargs(c_4) = {2}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                             [0 0]      [0 0]      [3]
                true() = [1]
                         [1]
                nil() = [0]
                        [0]
                false() = [1]
                          [1]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                nil() = [0]
                        [0]
                false() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                ge^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_10(x1) = [1 2] x1 + [5]
                           [0 0]      [3]
           
           * Path {11}->{9}: YES(?,O(n^2))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                nil() = [0]
                        [0]
                false() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_8()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                ge^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_8() = [1]
                        [0]
                c_10(x1) = [1 0] x1 + [6]
                           [0 0]      [7]
           
           * Path {11}->{10}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                generate(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                gen(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                nil() = [0]
                        [0]
                false() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                generate^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gen^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_9()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                ge^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_9() = [1]
                        [0]
                c_10(x1) = [1 0] x1 + [7]
                           [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: times^#(x, y) -> c_0(sum^#(generate(x, y)))
              , 2: generate^#(x, y) -> c_1(gen^#(x, y, 0()))
              , 3: gen^#(x, y, z) -> c_2(if^#(ge(z, x), x, y, z))
              , 4: if^#(true(), x, y, z) -> c_3()
              , 5: if^#(false(), x, y, z) -> c_4(y, gen^#(x, y, s(z)))
              , 6: sum^#(nil()) -> c_5()
              , 7: sum^#(cons(0(), xs)) -> c_6(sum^#(xs))
              , 8: sum^#(cons(s(x), xs)) -> c_7(sum^#(cons(x, xs)))
              , 9: ge^#(x, 0()) -> c_8()
              , 10: ge^#(0(), s(y)) -> c_9()
              , 11: ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                |->{9}                                                   [   YES(?,O(n^1))    ]
                |
                `->{10}                                                  [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3,5}                                                 [         NA         ]
                    |
                    `->{4}                                               [         NA         ]
             
             ->{1}                                                       [     inherited      ]
                |
                |->{6}                                                   [       MAYBE        ]
                |
                `->{8,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  times^#(x, y) -> c_0(sum^#(generate(x, y)))
                  , sum^#(nil()) -> c_5()
                  , generate(x, y) -> gen(x, y, 0())
                  , gen(x, y, z) -> if(ge(z, x), x, y, z)
                  , if(true(), x, y, z) -> nil()
                  , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                  , ge(x, 0()) -> true()
                  , ge(0(), s(y)) -> false()
                  , ge(s(x), s(y)) -> ge(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{8,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{8,7}->{6}.
           
           * Path {1}->{8,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  generate(x, y) -> gen(x, y, 0())
                , gen(x, y, z) -> if(ge(z, x), x, y, z)
                , if(true(), x, y, z) -> nil()
                , if(false(), x, y, z) -> cons(y, gen(x, y, s(z)))
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3,5}.
           
           * Path {2}->{3,5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{3,5}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {1},
                 Uargs(gen^#) = {}, Uargs(c_2) = {1}, Uargs(if^#) = {1},
                 Uargs(c_4) = {2}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [3]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [1] x1 + [1] x2 + [3]
                true() = [1]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [3]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [1] x1 + [0]
                if^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1, x2) = [0] x1 + [1] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{9}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_8()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_8() = [1]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{10}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(times) = {}, Uargs(sum) = {}, Uargs(generate) = {},
                 Uargs(gen) = {}, Uargs(if) = {}, Uargs(ge) = {}, Uargs(cons) = {},
                 Uargs(s) = {}, Uargs(times^#) = {}, Uargs(c_0) = {},
                 Uargs(sum^#) = {}, Uargs(generate^#) = {}, Uargs(c_1) = {},
                 Uargs(gen^#) = {}, Uargs(c_2) = {}, Uargs(if^#) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                sum(x1) = [0] x1 + [0]
                generate(x1, x2) = [0] x1 + [0] x2 + [0]
                gen(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                if(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                nil() = [0]
                false() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                generate^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                gen^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_2(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_3() = [0]
                c_4(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_9()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_10(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_9() = [1]
                c_10(x1) = [1] x1 + [7]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.