Problem AProVE 08 id inc

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 08 id inc

stdout:

MAYBE

Problem:
 f(s(x)) -> f(id_inc(c(x,x)))
 f(c(s(x),y)) -> g(c(x,y))
 g(c(s(x),y)) -> g(c(y,x))
 g(c(x,s(y))) -> g(c(y,x))
 g(c(x,x)) -> f(x)
 id_inc(c(x,y)) -> c(id_inc(x),id_inc(y))
 id_inc(s(x)) -> s(id_inc(x))
 id_inc(0()) -> 0()
 id_inc(0()) -> s(0())

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 08 id inc

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 08 id inc

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(s(x)) -> f(id_inc(c(x, x)))
     , f(c(s(x), y)) -> g(c(x, y))
     , g(c(s(x), y)) -> g(c(y, x))
     , g(c(x, s(y))) -> g(c(y, x))
     , g(c(x, x)) -> f(x)
     , id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
     , id_inc(s(x)) -> s(id_inc(x))
     , id_inc(0()) -> 0()
     , id_inc(0()) -> s(0())}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
              , 2: f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
              , 3: g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
              , 4: g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
              , 5: g^#(c(x, x)) -> c_4(f^#(x))
              , 6: id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
              , 7: id_inc^#(s(x)) -> c_6(id_inc^#(x))
              , 8: id_inc^#(0()) -> c_7()
              , 9: id_inc^#(0()) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [   YES(?,O(n^3))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,5,4,3,2}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,5,4,3,2}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                , id_inc(s(x)) -> s(id_inc(x))
                , id_inc(0()) -> 0()
                , id_inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6,7}: YES(?,O(n^3))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                id_inc(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c(x1, x2) = [1 3 0] x1 + [1 3 0] x2 + [0]
                            [0 1 0]      [0 1 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                id_inc^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0 2] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                c(x1, x2) = [1 5 6] x1 + [1 4 6] x2 + [0]
                            [0 1 3]      [0 0 1]      [0]
                            [0 0 1]      [0 0 1]      [4]
                id_inc^#(x1) = [1 0 2] x1 + [0]
                               [0 2 2]      [2]
                               [0 0 0]      [3]
                c_5(x1, x2) = [1 0 0] x1 + [1 2 0] x2 + [3]
                              [0 1 2]      [0 0 0]      [1]
                              [0 0 0]      [0 0 0]      [3]
                c_6(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [1]
                          [0 0 0]      [3]
           
           * Path {6,7}->{8}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                id_inc(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                id_inc^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_7()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                c(x1, x2) = [1 4 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                id_inc^#(x1) = [2 0 0] x1 + [0]
                               [1 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [1]
                        [0]
                        [0]
           
           * Path {6,7}->{9}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                id_inc(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                id_inc^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_8()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                c(x1, x2) = [1 4 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                id_inc^#(x1) = [2 0 0] x1 + [0]
                               [1 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [1]
                        [0]
                        [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
              , 2: f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
              , 3: g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
              , 4: g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
              , 5: g^#(c(x, x)) -> c_4(f^#(x))
              , 6: id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
              , 7: id_inc^#(s(x)) -> c_6(id_inc^#(x))
              , 8: id_inc^#(0()) -> c_7()
              , 9: id_inc^#(0()) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [   YES(?,O(n^2))    ]
                |
                |->{8}                                                   [   YES(?,O(n^2))    ]
                |
                `->{9}                                                   [   YES(?,O(n^2))    ]
             
             ->{1,5,4,3,2}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,5,4,3,2}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                , id_inc(s(x)) -> s(id_inc(x))
                , id_inc(0()) -> 0()
                , id_inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
                  , g^#(c(x, x)) -> c_4(f^#(x))
                  , g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
                  , g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
                  , f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
                  , id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                  , id_inc(s(x)) -> s(id_inc(x))
                  , id_inc(0()) -> 0()
                  , id_inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,7}: YES(?,O(n^2))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                id_inc(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
                            [0 1]      [0 1]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                id_inc^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                c(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 1]      [0 1]      [2]
                id_inc^#(x1) = [0 4] x1 + [1]
                               [0 0]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [6]
                              [0 0]      [0 0]      [0]
                c_6(x1) = [1 0] x1 + [5]
                          [0 0]      [0]
           
           * Path {6,7}->{8}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                id_inc(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                id_inc^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_7()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 3] x1 + [3]
                        [0 0]      [0]
                c(x1, x2) = [1 2] x1 + [1 2] x2 + [2]
                            [0 1]      [0 1]      [3]
                0() = [2]
                      [0]
                id_inc^#(x1) = [3 2] x1 + [0]
                               [3 3]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [7]
                              [0 0]      [0 0]      [6]
                c_6(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
                c_7() = [1]
                        [0]
           
           * Path {6,7}->{9}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                id_inc(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                id_inc^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_8()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 3] x1 + [3]
                        [0 0]      [0]
                c(x1, x2) = [1 2] x1 + [1 2] x2 + [2]
                            [0 1]      [0 1]      [3]
                0() = [2]
                      [0]
                id_inc^#(x1) = [3 2] x1 + [0]
                               [3 3]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [7]
                              [0 0]      [0 0]      [6]
                c_6(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
                c_8() = [1]
                        [0]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
              , 2: f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
              , 3: g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
              , 4: g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
              , 5: g^#(c(x, x)) -> c_4(f^#(x))
              , 6: id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
              , 7: id_inc^#(s(x)) -> c_6(id_inc^#(x))
              , 8: id_inc^#(0()) -> c_7()
              , 9: id_inc^#(0()) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,5,4,3,2}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,5,4,3,2}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                , id_inc(s(x)) -> s(id_inc(x))
                , id_inc(0()) -> 0()
                , id_inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
                  , g^#(c(x, x)) -> c_4(f^#(x))
                  , g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
                  , g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
                  , f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
                  , id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                  , id_inc(s(x)) -> s(id_inc(x))
                  , id_inc(0()) -> 0()
                  , id_inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                id_inc(x1) = [0] x1 + [0]
                c(x1, x2) = [1] x1 + [1] x2 + [0]
                g(x1) = [0] x1 + [0]
                0() = [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                id_inc^#(x1) = [3] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                c(x1, x2) = [1] x1 + [1] x2 + [4]
                id_inc^#(x1) = [2] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [7]
                c_6(x1) = [1] x1 + [7]
           
           * Path {6,7}->{8}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                id_inc(x1) = [0] x1 + [0]
                c(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                0() = [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                id_inc^#(x1) = [0] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_7()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                c(x1, x2) = [1] x1 + [1] x2 + [2]
                0() = [2]
                id_inc^#(x1) = [3] x1 + [2]
                c_5(x1, x2) = [1] x1 + [1] x2 + [3]
                c_6(x1) = [1] x1 + [0]
                c_7() = [1]
           
           * Path {6,7}->{9}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                id_inc(x1) = [0] x1 + [0]
                c(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                0() = [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                id_inc^#(x1) = [0] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_8()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                c(x1, x2) = [1] x1 + [1] x2 + [2]
                0() = [2]
                id_inc^#(x1) = [3] x1 + [2]
                c_5(x1, x2) = [1] x1 + [1] x2 + [3]
                c_6(x1) = [1] x1 + [0]
                c_8() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 08 id inc

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 08 id inc

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(s(x)) -> f(id_inc(c(x, x)))
     , f(c(s(x), y)) -> g(c(x, y))
     , g(c(s(x), y)) -> g(c(y, x))
     , g(c(x, s(y))) -> g(c(y, x))
     , g(c(x, x)) -> f(x)
     , id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
     , id_inc(s(x)) -> s(id_inc(x))
     , id_inc(0()) -> 0()
     , id_inc(0()) -> s(0())}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
              , 2: f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
              , 3: g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
              , 4: g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
              , 5: g^#(c(x, x)) -> c_4(f^#(x))
              , 6: id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
              , 7: id_inc^#(s(x)) -> c_6(id_inc^#(x))
              , 8: id_inc^#(0()) -> c_7()
              , 9: id_inc^#(0()) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [   YES(?,O(n^3))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,5,4,3,2}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,5,4,3,2}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                , id_inc(s(x)) -> s(id_inc(x))
                , id_inc(0()) -> 0()
                , id_inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6,7}: YES(?,O(n^3))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                id_inc(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c(x1, x2) = [1 3 0] x1 + [1 3 0] x2 + [0]
                            [0 1 0]      [0 1 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                id_inc^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0 2] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                c(x1, x2) = [1 5 6] x1 + [1 4 6] x2 + [0]
                            [0 1 3]      [0 0 1]      [0]
                            [0 0 1]      [0 0 1]      [4]
                id_inc^#(x1) = [1 0 2] x1 + [0]
                               [0 2 2]      [2]
                               [0 0 0]      [3]
                c_5(x1, x2) = [1 0 0] x1 + [1 2 0] x2 + [3]
                              [0 1 2]      [0 0 0]      [1]
                              [0 0 0]      [0 0 0]      [3]
                c_6(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [1]
                          [0 0 0]      [3]
           
           * Path {6,7}->{8}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                id_inc(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                id_inc^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_7()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                c(x1, x2) = [1 4 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                id_inc^#(x1) = [2 0 0] x1 + [0]
                               [1 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7() = [1]
                        [0]
                        [0]
           
           * Path {6,7}->{9}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                id_inc(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                id_inc^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_8()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                c(x1, x2) = [1 4 0] x1 + [1 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                id_inc^#(x1) = [2 0 0] x1 + [0]
                               [1 0 0]      [0]
                               [0 0 0]      [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [1]
                        [0]
                        [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
              , 2: f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
              , 3: g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
              , 4: g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
              , 5: g^#(c(x, x)) -> c_4(f^#(x))
              , 6: id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
              , 7: id_inc^#(s(x)) -> c_6(id_inc^#(x))
              , 8: id_inc^#(0()) -> c_7()
              , 9: id_inc^#(0()) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [   YES(?,O(n^2))    ]
                |
                |->{8}                                                   [   YES(?,O(n^2))    ]
                |
                `->{9}                                                   [   YES(?,O(n^2))    ]
             
             ->{1,5,4,3,2}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,5,4,3,2}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                , id_inc(s(x)) -> s(id_inc(x))
                , id_inc(0()) -> 0()
                , id_inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
                  , g^#(c(x, x)) -> c_4(f^#(x))
                  , g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
                  , g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
                  , f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
                  , id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                  , id_inc(s(x)) -> s(id_inc(x))
                  , id_inc(0()) -> 0()
                  , id_inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,7}: YES(?,O(n^2))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                id_inc(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
                            [0 1]      [0 1]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                id_inc^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                c(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 1]      [0 1]      [2]
                id_inc^#(x1) = [0 4] x1 + [1]
                               [0 0]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [6]
                              [0 0]      [0 0]      [0]
                c_6(x1) = [1 0] x1 + [5]
                          [0 0]      [0]
           
           * Path {6,7}->{8}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                id_inc(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                id_inc^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_7()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 3] x1 + [3]
                        [0 0]      [0]
                c(x1, x2) = [1 2] x1 + [1 2] x2 + [2]
                            [0 1]      [0 1]      [3]
                0() = [2]
                      [0]
                id_inc^#(x1) = [3 2] x1 + [0]
                               [3 3]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [7]
                              [0 0]      [0 0]      [6]
                c_6(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
                c_7() = [1]
                        [0]
           
           * Path {6,7}->{9}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                id_inc(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                id_inc^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_8()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 3] x1 + [3]
                        [0 0]      [0]
                c(x1, x2) = [1 2] x1 + [1 2] x2 + [2]
                            [0 1]      [0 1]      [3]
                0() = [2]
                      [0]
                id_inc^#(x1) = [3 2] x1 + [0]
                               [3 3]      [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [7]
                              [0 0]      [0 0]      [6]
                c_6(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
                c_8() = [1]
                        [0]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
              , 2: f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
              , 3: g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
              , 4: g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
              , 5: g^#(c(x, x)) -> c_4(f^#(x))
              , 6: id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
              , 7: id_inc^#(s(x)) -> c_6(id_inc^#(x))
              , 8: id_inc^#(0()) -> c_7()
              , 9: id_inc^#(0()) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,5,4,3,2}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,5,4,3,2}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                , id_inc(s(x)) -> s(id_inc(x))
                , id_inc(0()) -> 0()
                , id_inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(s(x)) -> c_0(f^#(id_inc(c(x, x))))
                  , g^#(c(x, x)) -> c_4(f^#(x))
                  , g^#(c(x, s(y))) -> c_3(g^#(c(y, x)))
                  , g^#(c(s(x), y)) -> c_2(g^#(c(y, x)))
                  , f^#(c(s(x), y)) -> c_1(g^#(c(x, y)))
                  , id_inc(c(x, y)) -> c(id_inc(x), id_inc(y))
                  , id_inc(s(x)) -> s(id_inc(x))
                  , id_inc(0()) -> 0()
                  , id_inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                id_inc(x1) = [0] x1 + [0]
                c(x1, x2) = [1] x1 + [1] x2 + [0]
                g(x1) = [0] x1 + [0]
                0() = [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                id_inc^#(x1) = [3] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                c(x1, x2) = [1] x1 + [1] x2 + [4]
                id_inc^#(x1) = [2] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [7]
                c_6(x1) = [1] x1 + [7]
           
           * Path {6,7}->{8}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                id_inc(x1) = [0] x1 + [0]
                c(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                0() = [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                id_inc^#(x1) = [0] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_7()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                c(x1, x2) = [1] x1 + [1] x2 + [2]
                0() = [2]
                id_inc^#(x1) = [3] x1 + [2]
                c_5(x1, x2) = [1] x1 + [1] x2 + [3]
                c_6(x1) = [1] x1 + [0]
                c_7() = [1]
           
           * Path {6,7}->{9}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(s) = {}, Uargs(id_inc) = {}, Uargs(c) = {},
                 Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(id_inc^#) = {}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                id_inc(x1) = [0] x1 + [0]
                c(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                0() = [0]
                f^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                id_inc^#(x1) = [0] x1 + [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {id_inc^#(0()) -> c_8()}
               Weak Rules:
                 {  id_inc^#(c(x, y)) -> c_5(id_inc^#(x), id_inc^#(y))
                  , id_inc^#(s(x)) -> c_6(id_inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(c) = {}, Uargs(id_inc^#) = {},
                 Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                c(x1, x2) = [1] x1 + [1] x2 + [2]
                0() = [2]
                id_inc^#(x1) = [3] x1 + [2]
                c_5(x1, x2) = [1] x1 + [1] x2 + [3]
                c_6(x1) = [1] x1 + [0]
                c_8() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.