Problem AProVE 10 challenge fab

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 challenge fab

stdout:

MAYBE

Problem:
 and(tt(),tt()) -> tt()
 is_nat(0()) -> tt()
 is_nat(s(x)) -> is_nat(x)
 is_natlist(nil()) -> tt()
 is_natlist(cons(x,xs)) -> and(is_nat(x),is_natlist(xs))
 from(x) -> fromCond(is_natlist(x),x)
 fromCond(tt(),cons(x,xs)) -> from(cons(s(x),cons(x,xs)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 challenge fab

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 challenge fab

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  and(tt(), tt()) -> tt()
     , is_nat(0()) -> tt()
     , is_nat(s(x)) -> is_nat(x)
     , is_natlist(nil()) -> tt()
     , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
     , from(x) -> fromCond(is_natlist(x), x)
     , fromCond(tt(), cons(x, xs)) -> from(cons(s(x), cons(x, xs)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), tt()) -> c_0()
              , 2: is_nat^#(0()) -> c_1()
              , 3: is_nat^#(s(x)) -> c_2(is_nat^#(x))
              , 4: is_natlist^#(nil()) -> c_3()
              , 5: is_natlist^#(cons(x, xs)) ->
                   c_4(and^#(is_nat(x), is_natlist(xs)))
              , 6: from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
              , 7: fromCond^#(tt(), cons(x, xs)) ->
                   c_6(from^#(cons(s(x), cons(x, xs))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                is_nat^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_2(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(0()) -> c_1()}
               Weak Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                is_nat^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_natlist^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(is_natlist^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                is_natlist^#(x1) = [0 2 0] x1 + [7]
                                   [2 2 0]      [3]
                                   [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(n^3))
             -----------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 0 0] x1 + [1 2 1] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [1]
                       [0]
                is_nat(x1) = [1 0 0] x1 + [1]
                             [0 0 0]      [1]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [2 0 2] x1 + [0]
                                 [0 1 0]      [0]
                                 [0 1 2]      [0]
                nil() = [1]
                        [2]
                        [0]
                cons(x1, x2) = [1 0 0] x1 + [1 2 2] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 0]      [2]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [1 0 0] x1 + [1 0 1] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                is_natlist^#(x1) = [2 1 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {is_natlist^#(cons(x, xs)) ->
                  c_4(and^#(is_nat(x), is_natlist(xs)))}
               Weak Rules:
                 {  is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [4]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 2 0]      [0]
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [1 2 2] x1 + [6]
                                 [0 0 0]      [4]
                                 [1 0 2]      [6]
                nil() = [0]
                        [2]
                        [2]
                cons(x1, x2) = [1 2 0] x1 + [1 2 0] x2 + [2]
                               [0 1 2]      [0 0 0]      [0]
                               [0 0 0]      [0 0 1]      [0]
                and^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [2]
                                [0 2 3]      [0 0 1]      [0]
                                [0 0 0]      [0 0 0]      [0]
                is_natlist^#(x1) = [4 0 4] x1 + [7]
                                   [4 4 4]      [7]
                                   [2 4 0]      [3]
                c_4(x1) = [2 0 0] x1 + [5]
                          [0 2 0]      [3]
                          [0 0 0]      [3]
           
           * Path {5}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 0 0] x1 + [1 0 0] x2 + [1]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [1 0 0] x1 + [1]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [2 3 1] x1 + [0]
                                 [3 1 0]      [0]
                                 [2 2 0]      [0]
                nil() = [2]
                        [0]
                        [0]
                cons(x1, x2) = [1 2 2] x1 + [1 3 0] x2 + [2]
                               [0 0 2]      [0 1 0]      [3]
                               [0 0 0]      [0 0 1]      [3]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), tt()) -> c_0()}
               Weak Rules:
                 {  is_natlist^#(cons(x, xs)) ->
                    c_4(and^#(is_nat(x), is_natlist(xs)))
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 2 0] x1 + [0 2 0] x2 + [0]
                              [2 0 2]      [0 0 0]      [0]
                              [2 2 2]      [0 0 0]      [0]
                tt() = [2]
                       [2]
                       [2]
                is_nat(x1) = [0 0 1] x1 + [0]
                             [0 0 0]      [4]
                             [0 0 1]      [0]
                0() = [0]
                      [0]
                      [4]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 1]      [0]
                is_natlist(x1) = [6 1 0] x1 + [0]
                                 [0 4 0]      [0]
                                 [4 0 4]      [0]
                nil() = [2]
                        [2]
                        [0]
                cons(x1, x2) = [1 0 1] x1 + [1 2 0] x2 + [2]
                               [0 1 2]      [0 1 2]      [0]
                               [0 0 1]      [0 0 1]      [1]
                and^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [2 0 1]      [0 0 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                is_natlist^#(x1) = [4 1 6] x1 + [0]
                                   [0 4 4]      [6]
                                   [4 1 6]      [1]
                c_4(x1) = [1 0 2] x1 + [3]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
           
           * Path {6,7}: NA
             --------------
             
             The usable rules for this path are:
             
               {  is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()
                , is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), tt()) -> c_0()
              , 2: is_nat^#(0()) -> c_1()
              , 3: is_nat^#(s(x)) -> c_2(is_nat^#(x))
              , 4: is_natlist^#(nil()) -> c_3()
              , 5: is_natlist^#(cons(x, xs)) ->
                   c_4(and^#(is_nat(x), is_natlist(xs)))
              , 6: from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
              , 7: fromCond^#(tt(), cons(x, xs)) ->
                   c_6(from^#(cons(s(x), cons(x, xs))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [       MAYBE        ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                is_nat^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(0()) -> c_1()}
               Weak Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                is_nat^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_natlist^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(is_natlist^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                is_natlist^#(x1) = [2 0] x1 + [7]
                                   [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
                              [0 0]      [0 0]      [1]
                tt() = [0]
                       [1]
                is_nat(x1) = [2 0] x1 + [1]
                             [0 0]      [2]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                is_natlist(x1) = [3 2] x1 + [0]
                                 [0 1]      [0]
                nil() = [0]
                        [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [0]
                               [0 1]      [0 1]      [2]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                is_natlist^#(x1) = [3 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {is_natlist^#(cons(x, xs)) ->
                  c_4(and^#(is_nat(x), is_natlist(xs)))}
               Weak Rules:
                 {  is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [2 0]      [0]
                0() = [4]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [2]
                and^#(x1, x2) = [2 0] x1 + [0 2] x2 + [2]
                                [0 0]      [0 0]      [0]
                is_natlist^#(x1) = [0 4] x1 + [7]
                                   [2 2]      [7]
                c_4(x1) = [2 0] x1 + [7]
                          [2 0]      [7]
           
           * Path {5}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [2]
                is_nat(x1) = [2 0] x1 + [1]
                             [0 0]      [2]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                is_natlist(x1) = [3 0] x1 + [0]
                                 [0 1]      [0]
                nil() = [3]
                        [2]
                cons(x1, x2) = [1 0] x1 + [1 3] x2 + [2]
                               [0 1]      [0 1]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), tt()) -> c_0()}
               Weak Rules:
                 {  is_natlist^#(cons(x, xs)) ->
                    c_4(and^#(is_nat(x), is_natlist(xs)))
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 2] x1 + [0 0] x2 + [0]
                              [0 4]      [0 0]      [0]
                tt() = [2]
                       [2]
                is_nat(x1) = [0 2] x1 + [0]
                             [0 2]      [0]
                0() = [0]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                is_natlist(x1) = [4 2] x1 + [0]
                                 [4 0]      [2]
                nil() = [0]
                        [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [2]
                               [0 0]      [0 0]      [2]
                and^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                [0 2]      [2 0]      [0]
                c_0() = [1]
                        [0]
                is_natlist^#(x1) = [4 0] x1 + [6]
                                   [2 0]      [3]
                c_4(x1) = [2 0] x1 + [7]
                          [0 0]      [3]
           
           * Path {6,7}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()
                , is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
                  , fromCond^#(tt(), cons(x, xs)) ->
                    c_6(from^#(cons(s(x), cons(x, xs))))
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), tt()) -> c_0()
              , 2: is_nat^#(0()) -> c_1()
              , 3: is_nat^#(s(x)) -> c_2(is_nat^#(x))
              , 4: is_natlist^#(nil()) -> c_3()
              , 5: is_natlist^#(cons(x, xs)) ->
                   c_4(and^#(is_nat(x), is_natlist(xs)))
              , 6: from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
              , 7: fromCond^#(tt(), cons(x, xs)) ->
                   c_6(from^#(cons(s(x), cons(x, xs))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [       MAYBE        ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                is_nat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                is_natlist(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [3] x1 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                is_nat^#(x1) = [2] x1 + [0]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                is_nat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                is_natlist(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(0()) -> c_1()}
               Weak Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                is_nat^#(x1) = [2] x1 + [0]
                c_1() = [1]
                c_2(x1) = [1] x1 + [0]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                is_nat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                is_natlist(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {is_natlist^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(is_natlist^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                is_natlist^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [1] x2 + [0]
                tt() = [3]
                is_nat(x1) = [1] x1 + [1]
                0() = [3]
                s(x1) = [1] x1 + [3]
                is_natlist(x1) = [2] x1 + [0]
                nil() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [1] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                is_natlist^#(x1) = [3] x1 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {is_natlist^#(cons(x, xs)) ->
                  c_4(and^#(is_nat(x), is_natlist(xs)))}
               Weak Rules:
                 {  is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [0] x2 + [4]
                tt() = [2]
                is_nat(x1) = [0] x1 + [2]
                0() = [0]
                s(x1) = [1] x1 + [0]
                is_natlist(x1) = [1] x1 + [4]
                nil() = [0]
                cons(x1, x2) = [1] x1 + [1] x2 + [4]
                and^#(x1, x2) = [2] x1 + [0] x2 + [0]
                is_natlist^#(x1) = [2] x1 + [7]
                c_4(x1) = [2] x1 + [3]
           
           * Path {5}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                is_nat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                is_natlist(x1) = [1] x1 + [2]
                nil() = [1]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6,7}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()
                , is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
                  , fromCond^#(tt(), cons(x, xs)) ->
                    c_6(from^#(cons(s(x), cons(x, xs))))
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 challenge fab

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 challenge fab

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  and(tt(), tt()) -> tt()
     , is_nat(0()) -> tt()
     , is_nat(s(x)) -> is_nat(x)
     , is_natlist(nil()) -> tt()
     , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
     , from(x) -> fromCond(is_natlist(x), x)
     , fromCond(tt(), cons(x, xs)) -> from(cons(s(x), cons(x, xs)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), tt()) -> c_0()
              , 2: is_nat^#(0()) -> c_1()
              , 3: is_nat^#(s(x)) -> c_2(is_nat^#(x))
              , 4: is_natlist^#(nil()) -> c_3()
              , 5: is_natlist^#(cons(x, xs)) ->
                   c_4(and^#(is_nat(x), is_natlist(xs)))
              , 6: from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
              , 7: fromCond^#(tt(), cons(x, xs)) ->
                   c_6(from^#(cons(s(x), cons(x, xs))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [         NA         ]
             
             ->{5}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^2))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                is_nat^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_2(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(0()) -> c_1()}
               Weak Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                is_nat^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_natlist^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(is_natlist^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                is_natlist^#(x1) = [0 2 0] x1 + [7]
                                   [2 2 0]      [3]
                                   [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(n^3))
             -----------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 0 0] x1 + [1 2 1] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [1]
                       [0]
                is_nat(x1) = [1 0 0] x1 + [1]
                             [0 0 0]      [1]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [2 0 2] x1 + [0]
                                 [0 1 0]      [0]
                                 [0 1 2]      [0]
                nil() = [1]
                        [2]
                        [0]
                cons(x1, x2) = [1 0 0] x1 + [1 2 2] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 0]      [2]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [1 0 0] x1 + [1 0 1] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                is_natlist^#(x1) = [2 1 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {is_natlist^#(cons(x, xs)) ->
                  c_4(and^#(is_nat(x), is_natlist(xs)))}
               Weak Rules:
                 {  is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [4]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 2 0]      [0]
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [1 2 2] x1 + [6]
                                 [0 0 0]      [4]
                                 [1 0 2]      [6]
                nil() = [0]
                        [2]
                        [2]
                cons(x1, x2) = [1 2 0] x1 + [1 2 0] x2 + [2]
                               [0 1 2]      [0 0 0]      [0]
                               [0 0 0]      [0 0 1]      [0]
                and^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [2]
                                [0 2 3]      [0 0 1]      [0]
                                [0 0 0]      [0 0 0]      [0]
                is_natlist^#(x1) = [4 0 4] x1 + [7]
                                   [4 4 4]      [7]
                                   [2 4 0]      [3]
                c_4(x1) = [2 0 0] x1 + [5]
                          [0 2 0]      [3]
                          [0 0 0]      [3]
           
           * Path {5}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 0 0] x1 + [1 0 0] x2 + [1]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                is_nat(x1) = [1 0 0] x1 + [1]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                is_natlist(x1) = [2 3 1] x1 + [0]
                                 [3 1 0]      [0]
                                 [2 2 0]      [0]
                nil() = [2]
                        [0]
                        [0]
                cons(x1, x2) = [1 2 2] x1 + [1 3 0] x2 + [2]
                               [0 0 2]      [0 1 0]      [3]
                               [0 0 0]      [0 0 1]      [3]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                fromCond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                is_nat^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                is_natlist^#(x1) = [0 0 0] x1 + [0]
                                   [0 0 0]      [0]
                                   [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fromCond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), tt()) -> c_0()}
               Weak Rules:
                 {  is_natlist^#(cons(x, xs)) ->
                    c_4(and^#(is_nat(x), is_natlist(xs)))
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 2 0] x1 + [0 2 0] x2 + [0]
                              [2 0 2]      [0 0 0]      [0]
                              [2 2 2]      [0 0 0]      [0]
                tt() = [2]
                       [2]
                       [2]
                is_nat(x1) = [0 0 1] x1 + [0]
                             [0 0 0]      [4]
                             [0 0 1]      [0]
                0() = [0]
                      [0]
                      [4]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 1]      [0]
                is_natlist(x1) = [6 1 0] x1 + [0]
                                 [0 4 0]      [0]
                                 [4 0 4]      [0]
                nil() = [2]
                        [2]
                        [0]
                cons(x1, x2) = [1 0 1] x1 + [1 2 0] x2 + [2]
                               [0 1 2]      [0 1 2]      [0]
                               [0 0 1]      [0 0 1]      [1]
                and^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [2 0 1]      [0 0 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                is_natlist^#(x1) = [4 1 6] x1 + [0]
                                   [0 4 4]      [6]
                                   [4 1 6]      [1]
                c_4(x1) = [1 0 2] x1 + [3]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
           
           * Path {6,7}: NA
             --------------
             
             The usable rules for this path are:
             
               {  is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()
                , is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), tt()) -> c_0()
              , 2: is_nat^#(0()) -> c_1()
              , 3: is_nat^#(s(x)) -> c_2(is_nat^#(x))
              , 4: is_natlist^#(nil()) -> c_3()
              , 5: is_natlist^#(cons(x, xs)) ->
                   c_4(and^#(is_nat(x), is_natlist(xs)))
              , 6: from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
              , 7: fromCond^#(tt(), cons(x, xs)) ->
                   c_6(from^#(cons(s(x), cons(x, xs))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [       MAYBE        ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                is_nat^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(0()) -> c_1()}
               Weak Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                is_nat^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_natlist^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(is_natlist^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                is_natlist^#(x1) = [2 0] x1 + [7]
                                   [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
                              [0 0]      [0 0]      [1]
                tt() = [0]
                       [1]
                is_nat(x1) = [2 0] x1 + [1]
                             [0 0]      [2]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                is_natlist(x1) = [3 2] x1 + [0]
                                 [0 1]      [0]
                nil() = [0]
                        [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [0]
                               [0 1]      [0 1]      [2]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                is_natlist^#(x1) = [3 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {is_natlist^#(cons(x, xs)) ->
                  c_4(and^#(is_nat(x), is_natlist(xs)))}
               Weak Rules:
                 {  is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                is_nat(x1) = [0 0] x1 + [0]
                             [2 0]      [0]
                0() = [4]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [0]
                is_natlist(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [2]
                and^#(x1, x2) = [2 0] x1 + [0 2] x2 + [2]
                                [0 0]      [0 0]      [0]
                is_natlist^#(x1) = [0 4] x1 + [7]
                                   [2 2]      [7]
                c_4(x1) = [2 0] x1 + [7]
                          [2 0]      [7]
           
           * Path {5}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [2]
                is_nat(x1) = [2 0] x1 + [1]
                             [0 0]      [2]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                is_natlist(x1) = [3 0] x1 + [0]
                                 [0 1]      [0]
                nil() = [3]
                        [2]
                cons(x1, x2) = [1 0] x1 + [1 3] x2 + [2]
                               [0 1]      [0 1]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                fromCond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                is_nat^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                is_natlist^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fromCond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), tt()) -> c_0()}
               Weak Rules:
                 {  is_natlist^#(cons(x, xs)) ->
                    c_4(and^#(is_nat(x), is_natlist(xs)))
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 2] x1 + [0 0] x2 + [0]
                              [0 4]      [0 0]      [0]
                tt() = [2]
                       [2]
                is_nat(x1) = [0 2] x1 + [0]
                             [0 2]      [0]
                0() = [0]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                is_natlist(x1) = [4 2] x1 + [0]
                                 [4 0]      [2]
                nil() = [0]
                        [2]
                cons(x1, x2) = [1 2] x1 + [1 1] x2 + [2]
                               [0 0]      [0 0]      [2]
                and^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                [0 2]      [2 0]      [0]
                c_0() = [1]
                        [0]
                is_natlist^#(x1) = [4 0] x1 + [6]
                                   [2 0]      [3]
                c_4(x1) = [2 0] x1 + [7]
                          [0 0]      [3]
           
           * Path {6,7}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()
                , is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
                  , fromCond^#(tt(), cons(x, xs)) ->
                    c_6(from^#(cons(s(x), cons(x, xs))))
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), tt()) -> c_0()
              , 2: is_nat^#(0()) -> c_1()
              , 3: is_nat^#(s(x)) -> c_2(is_nat^#(x))
              , 4: is_natlist^#(nil()) -> c_3()
              , 5: is_natlist^#(cons(x, xs)) ->
                   c_4(and^#(is_nat(x), is_natlist(xs)))
              , 6: from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
              , 7: fromCond^#(tt(), cons(x, xs)) ->
                   c_6(from^#(cons(s(x), cons(x, xs))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6,7}                                                     [       MAYBE        ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                is_nat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                is_natlist(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [3] x1 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                is_nat^#(x1) = [2] x1 + [0]
                c_2(x1) = [1] x1 + [7]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {1}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                is_nat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                is_natlist(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_nat^#(0()) -> c_1()}
               Weak Rules: {is_nat^#(s(x)) -> c_2(is_nat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(is_nat^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                is_nat^#(x1) = [2] x1 + [0]
                c_1() = [1]
                c_2(x1) = [1] x1 + [0]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                is_nat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                is_natlist(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {is_natlist^#(nil()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(is_natlist^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                is_natlist^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [1] x2 + [0]
                tt() = [3]
                is_nat(x1) = [1] x1 + [1]
                0() = [3]
                s(x1) = [1] x1 + [3]
                is_natlist(x1) = [2] x1 + [0]
                nil() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [1] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                is_natlist^#(x1) = [3] x1 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {is_natlist^#(cons(x, xs)) ->
                  c_4(and^#(is_nat(x), is_natlist(xs)))}
               Weak Rules:
                 {  is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(and^#) = {},
                 Uargs(is_natlist^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [0] x2 + [4]
                tt() = [2]
                is_nat(x1) = [0] x1 + [2]
                0() = [0]
                s(x1) = [1] x1 + [0]
                is_natlist(x1) = [1] x1 + [4]
                nil() = [0]
                cons(x1, x2) = [1] x1 + [1] x2 + [4]
                and^#(x1, x2) = [2] x1 + [0] x2 + [0]
                is_natlist^#(x1) = [2] x1 + [7]
                c_4(x1) = [2] x1 + [3]
           
           * Path {5}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)
                , is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(is_nat) = {}, Uargs(s) = {},
                 Uargs(is_natlist) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(fromCond) = {}, Uargs(and^#) = {1, 2}, Uargs(is_nat^#) = {},
                 Uargs(c_2) = {}, Uargs(is_natlist^#) = {}, Uargs(c_4) = {1},
                 Uargs(from^#) = {}, Uargs(c_5) = {}, Uargs(fromCond^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                is_nat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                is_natlist(x1) = [1] x1 + [2]
                nil() = [1]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                from(x1) = [0] x1 + [0]
                fromCond(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                is_nat^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                is_natlist^#(x1) = [0] x1 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                fromCond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6,7}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  is_natlist(nil()) -> tt()
                , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                , and(tt(), tt()) -> tt()
                , is_nat(0()) -> tt()
                , is_nat(s(x)) -> is_nat(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  from^#(x) -> c_5(fromCond^#(is_natlist(x), x))
                  , fromCond^#(tt(), cons(x, xs)) ->
                    c_6(from^#(cons(s(x), cons(x, xs))))
                  , is_natlist(nil()) -> tt()
                  , is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs))
                  , and(tt(), tt()) -> tt()
                  , is_nat(0()) -> tt()
                  , is_nat(s(x)) -> is_nat(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.