Problem AProVE 10 downfrom

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 downfrom

stdout:

MAYBE

Problem:
 isList(nil()) -> tt()
 isList(Cons(x,xs)) -> isList(xs)
 downfrom(0()) -> nil()
 downfrom(s(x)) -> Cons(s(x),downfrom(x))
 f(x) -> cond(isList(downfrom(x)),s(x))
 cond(tt(),x) -> f(x)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 downfrom

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 downfrom

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  isList(nil()) -> tt()
     , isList(Cons(x, xs)) -> isList(xs)
     , downfrom(0()) -> nil()
     , downfrom(s(x)) -> Cons(s(x), downfrom(x))
     , f(x) -> cond(isList(downfrom(x)), s(x))
     , cond(tt(), x) -> f(x)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isList^#(nil()) -> c_0()
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: downfrom^#(0()) -> c_2()
              , 4: downfrom^#(s(x)) -> c_3(downfrom^#(x))
              , 5: f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
              , 6: cond^#(tt(), x) -> c_5(f^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5,6}                                                     [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [1 3 0] x1 + [0 0 0] x2 + [0]
                               [0 1 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_1(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_0()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                Cons(x1, x2) = [0 0 0] x1 + [1 1 0] x2 + [0]
                               [0 0 0]      [0 1 1]      [1]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
           
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {1}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [3 3 3]      [0]
                                 [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(s(x)) -> c_3(downfrom^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                downfrom^#(x1) = [0 1 0] x1 + [2]
                                 [6 0 0]      [0]
                                 [2 3 0]      [2]
                c_3(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {1}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(0()) -> c_2()}
               Weak Rules: {downfrom^#(s(x)) -> c_3(downfrom^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                downfrom^#(x1) = [2 2 2] x1 + [0]
                                 [0 6 0]      [0]
                                 [0 0 2]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
           
           * Path {5,6}: NA
             --------------
             
             The usable rules for this path are:
             
               {  isList(nil()) -> tt()
                , isList(Cons(x, xs)) -> isList(xs)
                , downfrom(0()) -> nil()
                , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isList^#(nil()) -> c_0()
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: downfrom^#(0()) -> c_2()
              , 4: downfrom^#(s(x)) -> c_3(downfrom^#(x))
              , 5: f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
              , 6: cond^#(tt(), x) -> c_5(f^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5,6}                                                     [       MAYBE        ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                downfrom^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                isList^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                downfrom^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_0()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                Cons(x1, x2) = [0 0] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [3]
                isList^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {1}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                downfrom^#(x1) = [3 3] x1 + [0]
                                 [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(s(x)) -> c_3(downfrom^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                downfrom^#(x1) = [0 1] x1 + [1]
                                 [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {1}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                downfrom^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(0()) -> c_2()}
               Weak Rules: {downfrom^#(s(x)) -> c_3(downfrom^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                downfrom^#(x1) = [1 2] x1 + [2]
                                 [6 1]      [0]
                c_2() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
           
           * Path {5,6}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  isList(nil()) -> tt()
                , isList(Cons(x, xs)) -> isList(xs)
                , downfrom(0()) -> nil()
                , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
                  , cond^#(tt(), x) -> c_5(f^#(x))
                  , isList(nil()) -> tt()
                  , isList(Cons(x, xs)) -> isList(xs)
                  , downfrom(0()) -> nil()
                  , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isList^#(nil()) -> c_0()
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: downfrom^#(0()) -> c_2()
              , 4: downfrom^#(s(x)) -> c_3(downfrom^#(x))
              , 5: f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
              , 6: cond^#(tt(), x) -> c_5(f^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5,6}                                                     [       MAYBE        ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [1] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [3] x1 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                downfrom^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [1] x2 + [4]
                isList^#(x1) = [2] x1 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                downfrom^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_0()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                Cons(x1, x2) = [0] x1 + [1] x2 + [0]
                isList^#(x1) = [2] x1 + [0]
                c_0() = [1]
                c_1(x1) = [1] x1 + [0]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {1}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                downfrom^#(x1) = [3] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(s(x)) -> c_3(downfrom^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                downfrom^#(x1) = [2] x1 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {1}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                downfrom^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(0()) -> c_2()}
               Weak Rules: {downfrom^#(s(x)) -> c_3(downfrom^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                downfrom^#(x1) = [2] x1 + [0]
                c_2() = [1]
                c_3(x1) = [1] x1 + [0]
           
           * Path {5,6}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  isList(nil()) -> tt()
                , isList(Cons(x, xs)) -> isList(xs)
                , downfrom(0()) -> nil()
                , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
                  , cond^#(tt(), x) -> c_5(f^#(x))
                  , isList(nil()) -> tt()
                  , isList(Cons(x, xs)) -> isList(xs)
                  , downfrom(0()) -> nil()
                  , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 downfrom

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 downfrom

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  isList(nil()) -> tt()
     , isList(Cons(x, xs)) -> isList(xs)
     , downfrom(0()) -> nil()
     , downfrom(s(x)) -> Cons(s(x), downfrom(x))
     , f(x) -> cond(isList(downfrom(x)), s(x))
     , cond(tt(), x) -> f(x)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isList^#(nil()) -> c_0()
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: downfrom^#(0()) -> c_2()
              , 4: downfrom^#(s(x)) -> c_3(x, downfrom^#(x))
              , 5: f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
              , 6: cond^#(tt(), x) -> c_5(f^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5,6}                                                     [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [1 3 0] x1 + [0 0 0] x2 + [0]
                               [0 1 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_1(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_0()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                Cons(x1, x2) = [0 0 0] x1 + [1 1 0] x2 + [0]
                               [0 0 0]      [0 1 1]      [1]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
           
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {2}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [3 3 3]      [0]
                                 [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(s(x)) -> c_3(x, downfrom^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 5 6] x1 + [4]
                        [0 1 2]      [2]
                        [0 0 0]      [4]
                downfrom^#(x1) = [1 3 0] x1 + [0]
                                 [0 0 2]      [2]
                                 [0 0 2]      [0]
                c_3(x1, x2) = [0 4 3] x1 + [1 2 2] x2 + [1]
                              [0 0 0]      [0 0 0]      [7]
                              [0 0 0]      [0 0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {2}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                tt() = [0]
                       [0]
                       [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                downfrom(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cond(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                downfrom^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(0()) -> c_2()}
               Weak Rules: {downfrom^#(s(x)) -> c_3(x, downfrom^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 6 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [2]
                downfrom^#(x1) = [1 2 2] x1 + [0]
                                 [0 2 2]      [2]
                                 [2 0 2]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1, x2) = [0 1 1] x1 + [1 2 0] x2 + [3]
                              [0 2 3]      [0 0 0]      [6]
                              [2 3 3]      [0 2 0]      [4]
           
           * Path {5,6}: NA
             --------------
             
             The usable rules for this path are:
             
               {  isList(nil()) -> tt()
                , isList(Cons(x, xs)) -> isList(xs)
                , downfrom(0()) -> nil()
                , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isList^#(nil()) -> c_0()
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: downfrom^#(0()) -> c_2()
              , 4: downfrom^#(s(x)) -> c_3(x, downfrom^#(x))
              , 5: f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
              , 6: cond^#(tt(), x) -> c_5(f^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5,6}                                                     [       MAYBE        ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                downfrom^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                isList^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                downfrom^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_0()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                Cons(x1, x2) = [0 0] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [3]
                isList^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {2}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                downfrom^#(x1) = [3 3] x1 + [0]
                                 [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 3] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(s(x)) -> c_3(x, downfrom^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [2]
                downfrom^#(x1) = [1 2] x1 + [2]
                                 [4 0]      [0]
                c_3(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                              [2 3]      [2 0]      [0]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {2}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                nil() = [0]
                        [0]
                tt() = [0]
                       [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                downfrom(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                downfrom^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(0()) -> c_2()}
               Weak Rules: {downfrom^#(s(x)) -> c_3(x, downfrom^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [3]
                        [0 1]      [0]
                downfrom^#(x1) = [1 3] x1 + [2]
                                 [3 2]      [0]
                c_2() = [1]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                              [1 1]      [2 0]      [3]
           
           * Path {5,6}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  isList(nil()) -> tt()
                , isList(Cons(x, xs)) -> isList(xs)
                , downfrom(0()) -> nil()
                , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
                  , cond^#(tt(), x) -> c_5(f^#(x))
                  , isList(nil()) -> tt()
                  , isList(Cons(x, xs)) -> isList(xs)
                  , downfrom(0()) -> nil()
                  , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isList^#(nil()) -> c_0()
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: downfrom^#(0()) -> c_2()
              , 4: downfrom^#(s(x)) -> c_3(x, downfrom^#(x))
              , 5: f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
              , 6: cond^#(tt(), x) -> c_5(f^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5,6}                                                     [       MAYBE        ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [1] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [3] x1 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                downfrom^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1, x2) = [0] x1 + [0] x2 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [1] x2 + [4]
                isList^#(x1) = [2] x1 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                downfrom^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1, x2) = [0] x1 + [0] x2 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_0()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                Cons(x1, x2) = [0] x1 + [1] x2 + [0]
                isList^#(x1) = [2] x1 + [0]
                c_0() = [1]
                c_1(x1) = [1] x1 + [0]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {2}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                downfrom^#(x1) = [3] x1 + [0]
                c_2() = [0]
                c_3(x1, x2) = [0] x1 + [1] x2 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(s(x)) -> c_3(x, downfrom^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                downfrom^#(x1) = [2] x1 + [0]
                c_3(x1, x2) = [0] x1 + [1] x2 + [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(downfrom) = {},
                 Uargs(s) = {}, Uargs(f) = {}, Uargs(cond) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(downfrom^#) = {},
                 Uargs(c_3) = {2}, Uargs(f^#) = {}, Uargs(c_4) = {},
                 Uargs(cond^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isList(x1) = [0] x1 + [0]
                nil() = [0]
                tt() = [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                downfrom(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                f(x1) = [0] x1 + [0]
                cond(x1, x2) = [0] x1 + [0] x2 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                downfrom^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1, x2) = [0] x1 + [1] x2 + [0]
                f^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {downfrom^#(0()) -> c_2()}
               Weak Rules: {downfrom^#(s(x)) -> c_3(x, downfrom^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(downfrom^#) = {}, Uargs(c_3) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                downfrom^#(x1) = [3] x1 + [2]
                c_2() = [1]
                c_3(x1, x2) = [0] x1 + [1] x2 + [4]
           
           * Path {5,6}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  isList(nil()) -> tt()
                , isList(Cons(x, xs)) -> isList(xs)
                , downfrom(0()) -> nil()
                , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(x) -> c_4(cond^#(isList(downfrom(x)), s(x)))
                  , cond^#(tt(), x) -> c_5(f^#(x))
                  , isList(nil()) -> tt()
                  , isList(Cons(x, xs)) -> isList(xs)
                  , downfrom(0()) -> nil()
                  , downfrom(s(x)) -> Cons(s(x), downfrom(x))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.