Problem AProVE 10 ex3

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex3

stdout:

MAYBE

Problem:
 g(tt(),x,y) -> g(f(x,y),s(x),s(y))
 f(s(x),y) -> f(x,y)
 f(x,s(y)) -> f(x,y)
 f(0(),0()) -> tt()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex3

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex3

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  g(tt(), x, y) -> g(f(x, y), s(x), s(y))
     , f(s(x), y) -> f(x, y)
     , f(x, s(y)) -> f(x, y)
     , f(0(), 0()) -> tt()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
              , 2: f^#(s(x), y) -> c_1(f^#(x, y))
              , 3: f^#(x, s(y)) -> c_2(f^#(x, y))
              , 4: f^#(0(), 0()) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2,3}                                                     [   YES(?,O(n^3))    ]
                |
                `->{4}                                                   [   YES(?,O(n^3))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  f(s(x), y) -> f(x, y)
                , f(x, s(y)) -> f(x, y)
                , f(0(), 0()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
                  , f(s(x), y) -> f(x, y)
                  , f(x, s(y)) -> f(x, y)
                  , f(0(), 0()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,3}: YES(?,O(n^3))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                g^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_3() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 2] x1 + [0]
                        [0 1 2]      [4]
                        [0 0 1]      [0]
                f^#(x1, x2) = [0 2 0] x1 + [2 1 6] x2 + [0]
                              [0 0 0]      [1 0 2]      [0]
                              [0 2 4]      [2 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [0]
                          [0 0 0]      [6]
                c_2(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 2 0]      [7]
           
           * Path {2,3}->{4}: YES(?,O(n^3))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                g^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_3() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(0(), 0()) -> c_3()}
               Weak Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 3]      [0]
                        [0 0 1]      [2]
                0() = [2]
                      [0]
                      [2]
                f^#(x1, x2) = [1 3 2] x1 + [2 0 0] x2 + [0]
                              [0 1 1]      [0 0 0]      [0]
                              [0 3 0]      [1 3 0]      [4]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 0 0]      [4]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [3]
                c_3() = [1]
                        [0]
                        [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
              , 2: f^#(s(x), y) -> c_1(f^#(x, y))
              , 3: f^#(x, s(y)) -> c_2(f^#(x, y))
              , 4: f^#(0(), 0()) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2,3}                                                     [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  f(s(x), y) -> f(x, y)
                , f(x, s(y)) -> f(x, y)
                , f(0(), 0()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
                  , f(s(x), y) -> f(x, y)
                  , f(x, s(y)) -> f(x, y)
                  , f(0(), 0()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,3}: YES(?,O(n^2))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                g^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_3() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1] x1 + [0]
                        [0 1]      [4]
                f^#(x1, x2) = [0 1] x1 + [0 2] x2 + [0]
                              [1 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [7]
                          [0 0]      [0]
           
           * Path {2,3}->{4}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                g^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_3() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(0(), 0()) -> c_3()}
               Weak Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4] x1 + [2]
                        [0 0]      [0]
                0() = [2]
                      [2]
                f^#(x1, x2) = [2 2] x1 + [2 0] x2 + [0]
                              [0 0]      [0 2]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [0]
                c_2(x1) = [1 2] x1 + [3]
                          [0 0]      [0]
                c_3() = [1]
                        [0]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
              , 2: f^#(s(x), y) -> c_1(f^#(x, y))
              , 3: f^#(x, s(y)) -> c_2(f^#(x, y))
              , 4: f^#(0(), 0()) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2,3}                                                     [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  f(s(x), y) -> f(x, y)
                , f(x, s(y)) -> f(x, y)
                , f(0(), 0()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
                  , f(s(x), y) -> f(x, y)
                  , f(x, s(y)) -> f(x, y)
                  , f(0(), 0()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,3}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                tt() = [0]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                g^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                f^#(x1, x2) = [2] x1 + [6] x2 + [0]
                c_1(x1) = [1] x1 + [3]
                c_2(x1) = [1] x1 + [7]
           
           * Path {2,3}->{4}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                tt() = [0]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                g^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(0(), 0()) -> c_3()}
               Weak Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                0() = [2]
                f^#(x1, x2) = [0] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex3

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex3

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  g(tt(), x, y) -> g(f(x, y), s(x), s(y))
     , f(s(x), y) -> f(x, y)
     , f(x, s(y)) -> f(x, y)
     , f(0(), 0()) -> tt()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
              , 2: f^#(s(x), y) -> c_1(f^#(x, y))
              , 3: f^#(x, s(y)) -> c_2(f^#(x, y))
              , 4: f^#(0(), 0()) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2,3}                                                     [   YES(?,O(n^3))    ]
                |
                `->{4}                                                   [   YES(?,O(n^3))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  f(s(x), y) -> f(x, y)
                , f(x, s(y)) -> f(x, y)
                , f(0(), 0()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
                  , f(s(x), y) -> f(x, y)
                  , f(x, s(y)) -> f(x, y)
                  , f(0(), 0()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,3}: YES(?,O(n^3))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                g^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_3() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 2] x1 + [0]
                        [0 1 2]      [4]
                        [0 0 1]      [0]
                f^#(x1, x2) = [0 2 0] x1 + [2 1 6] x2 + [0]
                              [0 0 0]      [1 0 2]      [0]
                              [0 2 4]      [2 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [0]
                          [0 0 0]      [6]
                c_2(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 2 0]      [7]
           
           * Path {2,3}->{4}: YES(?,O(n^3))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                g^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_3() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(0(), 0()) -> c_3()}
               Weak Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 3]      [0]
                        [0 0 1]      [2]
                0() = [2]
                      [0]
                      [2]
                f^#(x1, x2) = [1 3 2] x1 + [2 0 0] x2 + [0]
                              [0 1 1]      [0 0 0]      [0]
                              [0 3 0]      [1 3 0]      [4]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 0 0]      [4]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [3]
                c_3() = [1]
                        [0]
                        [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
              , 2: f^#(s(x), y) -> c_1(f^#(x, y))
              , 3: f^#(x, s(y)) -> c_2(f^#(x, y))
              , 4: f^#(0(), 0()) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2,3}                                                     [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  f(s(x), y) -> f(x, y)
                , f(x, s(y)) -> f(x, y)
                , f(0(), 0()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
                  , f(s(x), y) -> f(x, y)
                  , f(x, s(y)) -> f(x, y)
                  , f(0(), 0()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,3}: YES(?,O(n^2))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                g^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_3() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1] x1 + [0]
                        [0 1]      [4]
                f^#(x1, x2) = [0 1] x1 + [0 2] x2 + [0]
                              [1 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [7]
                          [0 0]      [0]
           
           * Path {2,3}->{4}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                g^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_3() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(0(), 0()) -> c_3()}
               Weak Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4] x1 + [2]
                        [0 0]      [0]
                0() = [2]
                      [2]
                f^#(x1, x2) = [2 2] x1 + [2 0] x2 + [0]
                              [0 0]      [0 2]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [0]
                c_2(x1) = [1 2] x1 + [3]
                          [0 0]      [0]
                c_3() = [1]
                        [0]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
              , 2: f^#(s(x), y) -> c_1(f^#(x, y))
              , 3: f^#(x, s(y)) -> c_2(f^#(x, y))
              , 4: f^#(0(), 0()) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2,3}                                                     [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  f(s(x), y) -> f(x, y)
                , f(x, s(y)) -> f(x, y)
                , f(0(), 0()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  g^#(tt(), x, y) -> c_0(g^#(f(x, y), s(x), s(y)))
                  , f(s(x), y) -> f(x, y)
                  , f(x, s(y)) -> f(x, y)
                  , f(0(), 0()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2,3}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                tt() = [0]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                g^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                f^#(x1, x2) = [2] x1 + [6] x2 + [0]
                c_1(x1) = [1] x1 + [3]
                c_2(x1) = [1] x1 + [7]
           
           * Path {2,3}->{4}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g^#) = {},
                 Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                tt() = [0]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                g^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(0(), 0()) -> c_3()}
               Weak Rules:
                 {  f^#(s(x), y) -> c_1(f^#(x, y))
                  , f^#(x, s(y)) -> c_2(f^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(f^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                0() = [2]
                f^#(x1, x2) = [0] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.