Problem AProVE 10 ex4

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex4

stdout:

MAYBE

Problem:
 add(true(),x,xs) -> add(and(isNat(x),isList(xs)),x,Cons(x,xs))
 isList(Cons(x,xs)) -> isList(xs)
 isList(nil()) -> true()
 isNat(s(x)) -> isNat(x)
 isNat(0()) -> true()
 if(true(),x,y) -> x
 if(false(),x,y) -> y
 and(true(),true()) -> true()
 and(false(),x) -> false()
 and(x,false()) -> false()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex4

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex4

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  add(true(), x, xs) ->
       add(and(isNat(x), isList(xs)), x, Cons(x, xs))
     , isList(Cons(x, xs)) -> isList(xs)
     , isList(nil()) -> true()
     , isNat(s(x)) -> isNat(x)
     , isNat(0()) -> true()
     , if(true(), x, y) -> x
     , if(false(), x, y) -> y
     , and(true(), true()) -> true()
     , and(false(), x) -> false()
     , and(x, false()) -> false()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: add^#(true(), x, xs) ->
                   c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: isList^#(nil()) -> c_2()
              , 4: isNat^#(s(x)) -> c_3(isNat^#(x))
              , 5: isNat^#(0()) -> c_4()
              , 6: if^#(true(), x, y) -> c_5()
              , 7: if^#(false(), x, y) -> c_6()
              , 8: and^#(true(), true()) -> c_7()
              , 9: and^#(false(), x) -> c_8()
              , 10: and^#(x, false()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                `->{5}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs)) -> isList(xs)
                , isList(nil()) -> true()
                , isNat(s(x)) -> isNat(x)
                , isNat(0()) -> true()
                , and(true(), true()) -> true()
                , and(false(), x) -> false()
                , and(x, false()) -> false()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [1 3 0] x1 + [0 0 0] x2 + [0]
                               [0 1 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_1(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {2}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [1 1 0] x2 + [0]
                               [0 0 0]      [0 1 1]      [1]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [2]
                        [2]
                        [2]
                isList^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_1(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
           
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [3 3 3]      [0]
                              [3 3 3]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                isNat^#(x1) = [0 1 0] x1 + [2]
                              [6 0 0]      [0]
                              [2 3 0]      [2]
                c_3(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {4}->{5}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isNat^#(0()) -> c_4()}
               Weak Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                isNat^#(x1) = [2 2 2] x1 + [0]
                              [0 6 0]      [0]
                              [0 0 2]      [0]
                c_3(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
                c_4() = [1]
                        [0]
                        [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {if^#(true(), x, y) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                         [2]
                if^#(x1, x2, x3) = [0 2 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [7]
                                   [2 2 0]      [0 0 0]      [0 0 0]      [3]
                                   [2 2 2]      [0 0 0]      [0 0 0]      [3]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {if^#(false(), x, y) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                if^#(x1, x2, x3) = [0 2 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [7]
                                   [2 2 0]      [0 0 0]      [0 0 0]      [3]
                                   [2 2 2]      [0 0 0]      [0 0 0]      [3]
                c_6() = [0]
                        [1]
                        [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(true(), true()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                         [3]
                and^#(x1, x2) = [2 0 2] x1 + [1 0 0] x2 + [3]
                                [0 0 0]      [0 2 2]      [3]
                                [2 0 0]      [0 2 0]      [7]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {9}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(false(), x) -> c_8()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                and^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                [2 2 0]      [0 0 0]      [3]
                                [2 2 2]      [0 0 0]      [3]
                c_8() = [0]
                        [1]
                        [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6() = [0]
                        [0]
                        [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                and^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                [0 0 0]      [2 2 0]      [3]
                                [0 0 0]      [2 2 2]      [3]
                c_9() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: add^#(true(), x, xs) ->
                   c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: isList^#(nil()) -> c_2()
              , 4: isNat^#(s(x)) -> c_3(isNat^#(x))
              , 5: isNat^#(0()) -> c_4()
              , 6: if^#(true(), x, y) -> c_5()
              , 7: if^#(false(), x, y) -> c_6()
              , 8: and^#(true(), true()) -> c_7()
              , 9: and^#(false(), x) -> c_8()
              , 10: and^#(x, false()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs)) -> isList(xs)
                , isList(nil()) -> true()
                , isNat(s(x)) -> isNat(x)
                , isNat(0()) -> true()
                , and(true(), true()) -> true()
                , and(false(), x) -> false()
                , and(x, false()) -> false()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  add^#(true(), x, xs) ->
                    c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
                  , isList(Cons(x, xs)) -> isList(xs)
                  , isList(nil()) -> true()
                  , isNat(s(x)) -> isNat(x)
                  , isNat(0()) -> true()
                  , and(true(), true()) -> true()
                  , and(false(), x) -> false()
                  , and(x, false()) -> false()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                isList^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [3]
                nil() = [2]
                        [2]
                isList^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_1(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
                c_2() = [1]
                        [0]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [3 3] x1 + [0]
                              [3 3]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                isNat^#(x1) = [0 1] x1 + [1]
                              [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {4}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isNat^#(0()) -> c_4()}
               Weak Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                0() = [2]
                      [2]
                isNat^#(x1) = [1 2] x1 + [2]
                              [6 1]      [0]
                c_3(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
                c_4() = [1]
                        [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {if^#(true(), x, y) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                if^#(x1, x2, x3) = [2 0] x1 + [0 0] x2 + [0 0] x3 + [7]
                                   [2 2]      [0 0]      [0 0]      [7]
                c_5() = [0]
                        [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {if^#(false(), x, y) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                if^#(x1, x2, x3) = [2 0] x1 + [0 0] x2 + [0 0] x3 + [7]
                                   [2 2]      [0 0]      [0 0]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(true(), true()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                and^#(x1, x2) = [2 2] x1 + [0 0] x2 + [7]
                                [2 2]      [0 2]      [3]
                c_7() = [0]
                        [1]
           
           * Path {9}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(false(), x) -> c_8()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                and^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                [2 2]      [0 0]      [7]
                c_8() = [0]
                        [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                and^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                [0 0]      [2 2]      [7]
                c_9() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: add^#(true(), x, xs) ->
                   c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: isList^#(nil()) -> c_2()
              , 4: isNat^#(s(x)) -> c_3(isNat^#(x))
              , 5: isNat^#(0()) -> c_4()
              , 6: if^#(true(), x, y) -> c_5()
              , 7: if^#(false(), x, y) -> c_6()
              , 8: and^#(true(), true()) -> c_7()
              , 9: and^#(false(), x) -> c_8()
              , 10: and^#(x, false()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs)) -> isList(xs)
                , isList(nil()) -> true()
                , isNat(s(x)) -> isNat(x)
                , isNat(0()) -> true()
                , and(true(), true()) -> true()
                , and(false(), x) -> false()
                , and(x, false()) -> false()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  add^#(true(), x, xs) ->
                    c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
                  , isList(Cons(x, xs)) -> isList(xs)
                  , isList(nil()) -> true()
                  , isNat(s(x)) -> isNat(x)
                  , isNat(0()) -> true()
                  , and(true(), true()) -> true()
                  , and(false(), x) -> false()
                  , and(x, false()) -> false()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [1] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [3] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [1] x2 + [4]
                isList^#(x1) = [2] x1 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [1] x2 + [0]
                nil() = [2]
                isList^#(x1) = [2] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [1]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [3] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                isNat^#(x1) = [2] x1 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isNat^#(0()) -> c_4()}
               Weak Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                0() = [2]
                isNat^#(x1) = [2] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {if^#(true(), x, y) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [7]
                if^#(x1, x2, x3) = [1] x1 + [0] x2 + [0] x3 + [7]
                c_5() = [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {if^#(false(), x, y) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                if^#(x1, x2, x3) = [1] x1 + [0] x2 + [0] x3 + [7]
                c_6() = [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(true(), true()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                and^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_7() = [0]
           
           * Path {9}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(false(), x) -> c_8()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                and^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_8() = [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5() = [0]
                c_6() = [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                and^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_9() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex4

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 ex4

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  add(true(), x, xs) ->
       add(and(isNat(x), isList(xs)), x, Cons(x, xs))
     , isList(Cons(x, xs)) -> isList(xs)
     , isList(nil()) -> true()
     , isNat(s(x)) -> isNat(x)
     , isNat(0()) -> true()
     , if(true(), x, y) -> x
     , if(false(), x, y) -> y
     , and(true(), true()) -> true()
     , and(false(), x) -> false()
     , and(x, false()) -> false()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: add^#(true(), x, xs) ->
                   c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: isList^#(nil()) -> c_2()
              , 4: isNat^#(s(x)) -> c_3(isNat^#(x))
              , 5: isNat^#(0()) -> c_4()
              , 6: if^#(true(), x, y) -> c_5(x)
              , 7: if^#(false(), x, y) -> c_6(y)
              , 8: and^#(true(), true()) -> c_7()
              , 9: and^#(false(), x) -> c_8()
              , 10: and^#(x, false()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                `->{5}                                                   [   YES(?,O(n^2))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs)) -> isList(xs)
                , isList(nil()) -> true()
                , isNat(s(x)) -> isNat(x)
                , isNat(0()) -> true()
                , and(true(), true()) -> true()
                , and(false(), x) -> false()
                , and(x, false()) -> false()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [1 3 0] x1 + [0 0 0] x2 + [0]
                               [0 1 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 0]      [0]
                isList^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_1(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {2}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [1 1 0] x2 + [0]
                               [0 0 0]      [0 1 1]      [1]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [2]
                        [2]
                        [2]
                isList^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_1(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
           
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [3 3 3]      [0]
                              [3 3 3]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                isNat^#(x1) = [0 1 0] x1 + [2]
                              [6 0 0]      [0]
                              [2 3 0]      [2]
                c_3(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {4}->{5}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isNat^#(0()) -> c_4()}
               Weak Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                isNat^#(x1) = [2 2 2] x1 + [0]
                              [0 6 0]      [0]
                              [0 0 2]      [0]
                c_3(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
                c_4() = [1]
                        [0]
                        [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [3 3 3] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {if^#(true(), x, y) -> c_5(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [0]
                         [2]
                if^#(x1, x2, x3) = [2 0 2] x1 + [7 7 7] x2 + [0 0 0] x3 + [7]
                                   [2 0 2]      [7 7 7]      [0 0 0]      [7]
                                   [2 0 2]      [7 7 7]      [0 0 0]      [7]
                c_5(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [3 3 3] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {if^#(false(), x, y) -> c_6(y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [0]
                          [2]
                if^#(x1, x2, x3) = [2 0 2] x1 + [0 0 0] x2 + [7 7 7] x3 + [7]
                                   [2 0 2]      [0 0 0]      [7 7 7]      [7]
                                   [2 0 2]      [0 0 0]      [7 7 7]      [7]
                c_6(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(true(), true()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                         [3]
                and^#(x1, x2) = [2 0 2] x1 + [1 0 0] x2 + [3]
                                [0 0 0]      [0 2 2]      [3]
                                [2 0 0]      [0 2 0]      [7]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {9}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(false(), x) -> c_8()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                and^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                [2 2 0]      [0 0 0]      [3]
                                [2 2 2]      [0 0 0]      [3]
                c_8() = [0]
                        [1]
                        [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                isNat(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                add^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                isNat^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                and^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                [0 0 0]      [2 2 0]      [3]
                                [0 0 0]      [2 2 2]      [3]
                c_9() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: add^#(true(), x, xs) ->
                   c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: isList^#(nil()) -> c_2()
              , 4: isNat^#(s(x)) -> c_3(isNat^#(x))
              , 5: isNat^#(0()) -> c_4()
              , 6: if^#(true(), x, y) -> c_5(x)
              , 7: if^#(false(), x, y) -> c_6(y)
              , 8: and^#(true(), true()) -> c_7()
              , 9: and^#(false(), x) -> c_8()
              , 10: and^#(x, false()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs)) -> isList(xs)
                , isList(nil()) -> true()
                , isNat(s(x)) -> isNat(x)
                , isNat(0()) -> true()
                , and(true(), true()) -> true()
                , and(false(), x) -> false()
                , and(x, false()) -> false()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  add^#(true(), x, xs) ->
                    c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
                  , isList(Cons(x, xs)) -> isList(xs)
                  , isList(nil()) -> true()
                  , isNat(s(x)) -> isNat(x)
                  , isNat(0()) -> true()
                  , and(true(), true()) -> true()
                  , and(false(), x) -> false()
                  , and(x, false()) -> false()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                isList^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [3]
                nil() = [2]
                        [2]
                isList^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_1(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
                c_2() = [1]
                        [0]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [3 3] x1 + [0]
                              [3 3]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                isNat^#(x1) = [0 1] x1 + [1]
                              [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {4}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isNat^#(0()) -> c_4()}
               Weak Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                0() = [2]
                      [2]
                isNat^#(x1) = [1 2] x1 + [2]
                              [6 1]      [0]
                c_3(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
                c_4() = [1]
                        [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [3 3] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {if^#(true(), x, y) -> c_5(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                if^#(x1, x2, x3) = [2 2] x1 + [7 7] x2 + [0 0] x3 + [7]
                                   [2 2]      [7 7]      [0 0]      [3]
                c_5(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [3 3] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {if^#(false(), x, y) -> c_6(y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                if^#(x1, x2, x3) = [2 2] x1 + [0 0] x2 + [7 7] x3 + [7]
                                   [2 2]      [0 0]      [7 7]      [3]
                c_6(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(true(), true()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                and^#(x1, x2) = [2 2] x1 + [0 0] x2 + [7]
                                [2 2]      [0 2]      [3]
                c_7() = [0]
                        [1]
           
           * Path {9}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(false(), x) -> c_8()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                and^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                [2 2]      [0 0]      [7]
                c_8() = [0]
                        [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                add^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                and^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                [0 0]      [2 2]      [7]
                c_9() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: add^#(true(), x, xs) ->
                   c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
              , 2: isList^#(Cons(x, xs)) -> c_1(isList^#(xs))
              , 3: isList^#(nil()) -> c_2()
              , 4: isNat^#(s(x)) -> c_3(isNat^#(x))
              , 5: isNat^#(0()) -> c_4()
              , 6: if^#(true(), x, y) -> c_5(x)
              , 7: if^#(false(), x, y) -> c_6(y)
              , 8: and^#(true(), true()) -> c_7()
              , 9: and^#(false(), x) -> c_8()
              , 10: and^#(x, false()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{9}                                                       [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{5}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs)) -> isList(xs)
                , isList(nil()) -> true()
                , isNat(s(x)) -> isNat(x)
                , isNat(0()) -> true()
                , and(true(), true()) -> true()
                , and(false(), x) -> false()
                , and(x, false()) -> false()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  add^#(true(), x, xs) ->
                    c_0(add^#(and(isNat(x), isList(xs)), x, Cons(x, xs)))
                  , isList(Cons(x, xs)) -> isList(xs)
                  , isList(nil()) -> true()
                  , isNat(s(x)) -> isNat(x)
                  , isNat(0()) -> true()
                  , and(true(), true()) -> true()
                  , and(false(), x) -> false()
                  , and(x, false()) -> false()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [1] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [3] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [1] x2 + [4]
                isList^#(x1) = [2] x1 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {1}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {isList^#(Cons(x, xs)) -> c_1(isList^#(xs))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [1] x2 + [0]
                nil() = [2]
                isList^#(x1) = [2] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [1]
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [3] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                isNat^#(x1) = [2] x1 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {1}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isNat^#(0()) -> c_4()}
               Weak Rules: {isNat^#(s(x)) -> c_3(isNat^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                0() = [2]
                isNat^#(x1) = [2] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [3] x2 + [0] x3 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {if^#(true(), x, y) -> c_5(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [5]
                if^#(x1, x2, x3) = [3] x1 + [7] x2 + [0] x3 + [0]
                c_5(x1) = [1] x1 + [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [3] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {if^#(false(), x, y) -> c_6(y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(if^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [5]
                if^#(x1, x2, x3) = [3] x1 + [0] x2 + [7] x3 + [0]
                c_6(x1) = [1] x1 + [0]
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(true(), true()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                and^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_7() = [0]
           
           * Path {9}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(false(), x) -> c_8()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                and^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_8() = [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(add) = {}, Uargs(and) = {}, Uargs(isNat) = {},
                 Uargs(isList) = {}, Uargs(Cons) = {}, Uargs(s) = {},
                 Uargs(if) = {}, Uargs(add^#) = {}, Uargs(c_0) = {},
                 Uargs(isList^#) = {}, Uargs(c_1) = {}, Uargs(isNat^#) = {},
                 Uargs(c_3) = {}, Uargs(if^#) = {}, Uargs(c_5) = {},
                 Uargs(c_6) = {}, Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                add(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                isNat(x1) = [0] x1 + [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                false() = [0]
                add^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                isNat^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                and^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_9() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.