Problem AProVE 10 isList

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 isList

stdout:

MAYBE

Problem:
 f(tt(),x) -> f(isList(x),x)
 isList(Cons(x,xs())) -> isList(xs())
 isList(nil()) -> tt()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 isList

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 isList

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(tt(), x) -> f(isList(x), x)
     , isList(Cons(x, xs())) -> isList(xs())
     , isList(nil()) -> tt()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(tt(), x) -> c_0(f^#(isList(x), x))
              , 2: isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))
              , 3: isList^#(nil()) -> c_2()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs())) -> isList(xs())
                , isList(nil()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(tt(), x) -> c_0(f^#(isList(x), x))
                  , isList(Cons(x, xs())) -> isList(xs())
                  , isList(nil()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                xs() = [0]
                       [0]
                       [0]
                nil() = [0]
                        [0]
                        [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [1]
                               [0 0 0]      [0 0 1]      [2]
                               [0 0 0]      [0 0 0]      [0]
                xs() = [0]
                       [2]
                       [2]
                isList^#(x1) = [2 3 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [2 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                xs() = [0]
                       [0]
                       [0]
                nil() = [0]
                        [0]
                        [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isList^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                isList^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_2() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(tt(), x) -> c_0(f^#(isList(x), x))
              , 2: isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))
              , 3: isList^#(nil()) -> c_2()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs())) -> isList(xs())
                , isList(nil()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(tt(), x) -> c_0(f^#(isList(x), x))
                  , isList(Cons(x, xs())) -> isList(xs())
                  , isList(nil()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                xs() = [0]
                       [0]
                nil() = [0]
                        [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                xs() = [0]
                       [0]
                isList^#(x1) = [2 0] x1 + [4]
                               [2 0]      [2]
                c_1(x1) = [0 0] x1 + [7]
                          [0 2]      [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                xs() = [0]
                       [0]
                nil() = [0]
                        [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isList^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                isList^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_2() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(tt(), x) -> c_0(f^#(isList(x), x))
              , 2: isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))
              , 3: isList^#(nil()) -> c_2()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs())) -> isList(xs())
                , isList(nil()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(tt(), x) -> c_0(f^#(isList(x), x))
                  , isList(Cons(x, xs())) -> isList(xs())
                  , isList(nil()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                xs() = [0]
                nil() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [0] x2 + [2]
                xs() = [0]
                isList^#(x1) = [2] x1 + [2]
                c_1(x1) = [2] x1 + [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                xs() = [0]
                nil() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isList^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                isList^#(x1) = [1] x1 + [7]
                c_2() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 isList

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputAProVE 10 isList

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(tt(), x) -> f(isList(x), x)
     , isList(Cons(x, xs())) -> isList(xs())
     , isList(nil()) -> tt()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(tt(), x) -> c_0(f^#(isList(x), x))
              , 2: isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))
              , 3: isList^#(nil()) -> c_2()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs())) -> isList(xs())
                , isList(nil()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(tt(), x) -> c_0(f^#(isList(x), x))
                  , isList(Cons(x, xs())) -> isList(xs())
                  , isList(nil()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                xs() = [0]
                       [0]
                       [0]
                nil() = [0]
                        [0]
                        [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [1]
                               [0 0 0]      [0 0 1]      [2]
                               [0 0 0]      [0 0 0]      [0]
                xs() = [0]
                       [2]
                       [2]
                isList^#(x1) = [2 3 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [2 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                isList(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                Cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                xs() = [0]
                       [0]
                       [0]
                nil() = [0]
                        [0]
                        [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isList^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isList^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                isList^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_2() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(tt(), x) -> c_0(f^#(isList(x), x))
              , 2: isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))
              , 3: isList^#(nil()) -> c_2()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs())) -> isList(xs())
                , isList(nil()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(tt(), x) -> c_0(f^#(isList(x), x))
                  , isList(Cons(x, xs())) -> isList(xs())
                  , isList(nil()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                xs() = [0]
                       [0]
                nil() = [0]
                        [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                xs() = [0]
                       [0]
                isList^#(x1) = [2 0] x1 + [4]
                               [2 0]      [2]
                c_1(x1) = [0 0] x1 + [7]
                          [0 2]      [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isList(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                Cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                xs() = [0]
                       [0]
                nil() = [0]
                        [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isList^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isList^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                isList^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_2() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(tt(), x) -> c_0(f^#(isList(x), x))
              , 2: isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))
              , 3: isList^#(nil()) -> c_2()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  isList(Cons(x, xs())) -> isList(xs())
                , isList(nil()) -> tt()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(tt(), x) -> c_0(f^#(isList(x), x))
                  , isList(Cons(x, xs())) -> isList(xs())
                  , isList(nil()) -> tt()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                xs() = [0]
                nil() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(Cons(x, xs())) -> c_1(isList^#(xs()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(Cons) = {}, Uargs(isList^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                Cons(x1, x2) = [0] x1 + [0] x2 + [2]
                xs() = [0]
                isList^#(x1) = [2] x1 + [2]
                c_1(x1) = [2] x1 + [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(isList) = {}, Uargs(Cons) = {},
                 Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(isList^#) = {},
                 Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isList(x1) = [0] x1 + [0]
                Cons(x1, x2) = [0] x1 + [0] x2 + [0]
                xs() = [0]
                nil() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isList^#(nil()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isList^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                isList^#(x1) = [1] x1 + [7]
                c_2() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.