Problem Beerendonk 07 10

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputBeerendonk 07 10

stdout:

MAYBE

Problem:
 cond1(true(),x) -> cond2(even(x),x)
 cond2(true(),x) -> cond1(neq(x,0()),div2(x))
 cond2(false(),x) -> cond1(neq(x,0()),p(x))
 neq(0(),0()) -> false()
 neq(0(),s(x)) -> true()
 neq(s(x),0()) -> true()
 neq(s(x),s(y())) -> neq(x,y())
 even(0()) -> true()
 even(s(0())) -> false()
 even(s(s(x))) -> even(x)
 div2(0()) -> 0()
 div2(s(0())) -> 0()
 div2(s(s(x))) -> s(div2(x))
 p(0()) -> 0()
 p(s(x)) -> x

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputBeerendonk 07 10

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputBeerendonk 07 10

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  cond1(true(), x) -> cond2(even(x), x)
     , cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
     , cond2(false(), x) -> cond1(neq(x, 0()), p(x))
     , neq(0(), 0()) -> false()
     , neq(0(), s(x)) -> true()
     , neq(s(x), 0()) -> true()
     , neq(s(x), s(y())) -> neq(x, y())
     , even(0()) -> true()
     , even(s(0())) -> false()
     , even(s(s(x))) -> even(x)
     , div2(0()) -> 0()
     , div2(s(0())) -> 0()
     , div2(s(s(x))) -> s(div2(x))
     , p(0()) -> 0()
     , p(s(x)) -> x}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
              , 2: cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
              , 3: cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
              , 4: neq^#(0(), 0()) -> c_3()
              , 5: neq^#(0(), s(x)) -> c_4()
              , 6: neq^#(s(x), 0()) -> c_5()
              , 7: neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))
              , 8: even^#(0()) -> c_7()
              , 9: even^#(s(0())) -> c_8()
              , 10: even^#(s(s(x))) -> c_9(even^#(x))
              , 11: div2^#(0()) -> c_10()
              , 12: div2^#(s(0())) -> c_11()
              , 13: div2^#(s(s(x))) -> c_12(div2^#(x))
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [    YES(?,O(1))     ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [   YES(?,O(n^2))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^2))    ]
             
             ->{10}                                                      [   YES(?,O(n^2))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^2))    ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  neq(0(), 0()) -> false()
                , neq(0(), s(x)) -> true()
                , neq(s(x), 0()) -> true()
                , neq(s(x), s(y())) -> neq(x, y())
                , even(0()) -> true()
                , even(s(0())) -> false()
                , even(s(s(x))) -> even(x)
                , div2(0()) -> 0()
                , div2(s(0())) -> 0()
                , div2(s(s(x))) -> s(div2(x))
                , p(0()) -> 0()
                , p(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Induced complexity for the usable rules: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(neq^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [3]
                neq^#(x1, x2) = [2 0 2] x1 + [1 0 0] x2 + [3]
                                [0 0 0]      [0 2 2]      [3]
                                [2 0 0]      [0 2 0]      [7]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), s(x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                neq^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [3]
                                [0 0 2]      [2 0 0]      [7]
                                [0 0 0]      [0 2 2]      [7]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), 0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                neq^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [3]
                                [0 0 2]      [2 0 0]      [7]
                                [0 0 0]      [0 2 2]      [7]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 1 0] x1 + [0 0 0] x2 + [0]
                                [3 0 0]      [0 0 0]      [0]
                                [3 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(y) = {}, Uargs(neq^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [0]
                        [0 1 0]      [7]
                        [0 0 0]      [0]
                y() = [0]
                      [1]
                      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 1 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [4 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {10}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [3 0 0]      [0]
                             [3 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [2 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 1]      [0]
                        [0 0 1]      [2]
                even^#(x1) = [2 0 2] x1 + [0]
                             [4 0 2]      [0]
                             [0 0 0]      [2]
                c_9(x1) = [1 0 2] x1 + [3]
                          [2 0 0]      [0]
                          [0 0 0]      [2]
           
           * Path {10}->{8}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(0()) -> c_7()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_7) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                even^#(x1) = [2 0 0] x1 + [0]
                             [0 0 2]      [4]
                             [1 2 2]      [0]
                c_7() = [1]
                        [0]
                        [0]
                c_9(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 0 0]      [6]
           
           * Path {10}->{9}: YES(?,O(n^2))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(s(0())) -> c_8()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [0]
                even^#(x1) = [2 3 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 5 0]      [0]
                c_8() = [1]
                        [0]
                        [0]
                c_9(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {13}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [3 0 0]      [0]
                             [3 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [2 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 1]      [0]
                        [0 0 1]      [2]
                div2^#(x1) = [2 0 2] x1 + [0]
                             [4 0 2]      [0]
                             [0 0 0]      [2]
                c_12(x1) = [1 0 2] x1 + [3]
                           [2 0 0]      [0]
                           [0 0 0]      [2]
           
           * Path {13}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(0()) -> c_10()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                div2^#(x1) = [2 0 0] x1 + [0]
                             [0 0 2]      [4]
                             [1 2 2]      [0]
                c_10() = [1]
                         [0]
                         [0]
                c_12(x1) = [1 0 0] x1 + [3]
                           [0 0 0]      [7]
                           [0 0 0]      [6]
           
           * Path {13}->{12}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(0())) -> c_11()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_11) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [0]
                div2^#(x1) = [2 3 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 5 0]      [0]
                c_11() = [1]
                         [0]
                         [0]
                c_12(x1) = [1 0 1] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_13) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                p^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_13() = [0]
                         [1]
                         [1]
           
           * Path {15}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_14()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                p^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_14() = [0]
                         [1]
                         [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
              , 2: cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
              , 3: cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
              , 4: neq^#(0(), 0()) -> c_3()
              , 5: neq^#(0(), s(x)) -> c_4()
              , 6: neq^#(s(x), 0()) -> c_5()
              , 7: neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))
              , 8: even^#(0()) -> c_7()
              , 9: even^#(s(0())) -> c_8()
              , 10: even^#(s(s(x))) -> c_9(even^#(x))
              , 11: div2^#(0()) -> c_10()
              , 12: div2^#(s(0())) -> c_11()
              , 13: div2^#(s(s(x))) -> c_12(div2^#(x))
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [    YES(?,O(1))     ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [   YES(?,O(n^1))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^2))    ]
             
             ->{10}                                                      [   YES(?,O(n^1))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^2))    ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {  neq(0(), 0()) -> false()
                , neq(0(), s(x)) -> true()
                , neq(s(x), 0()) -> true()
                , neq(s(x), s(y())) -> neq(x, y())
                , even(0()) -> true()
                , even(s(0())) -> false()
                , even(s(s(x))) -> even(x)
                , div2(0()) -> 0()
                , div2(s(0())) -> 0()
                , div2(s(s(x))) -> s(div2(x))
                , p(0()) -> 0()
                , p(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Induced complexity for the usable rules: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
                  , cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
                  , cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
                  , neq(0(), 0()) -> false()
                  , neq(0(), s(x)) -> true()
                  , neq(s(x), 0()) -> true()
                  , neq(s(x), s(y())) -> neq(x, y())
                  , even(0()) -> true()
                  , even(s(0())) -> false()
                  , even(s(s(x))) -> even(x)
                  , div2(0()) -> 0()
                  , div2(s(0())) -> 0()
                  , div2(s(s(x))) -> s(div2(x))
                  , p(0()) -> 0()
                  , p(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(neq^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                neq^#(x1, x2) = [2 2] x1 + [0 0] x2 + [7]
                                [2 2]      [0 2]      [3]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), s(x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [0]
                neq^#(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                                [0 0]      [0 0]      [3]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), 0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                neq^#(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                                [0 0]      [0 0]      [3]
                c_5() = [0]
                        [1]
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [3 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [2 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(y) = {}, Uargs(neq^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [1]
                y() = [2]
                      [0]
                neq^#(x1, x2) = [2 1] x1 + [0 0] x2 + [0]
                                [0 1]      [2 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [7]
           
           * Path {10}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [3 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [2 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [1]
                even^#(x1) = [2 2] x1 + [2]
                             [6 0]      [0]
                c_9(x1) = [1 0] x1 + [5]
                          [2 0]      [7]
           
           * Path {10}->{8}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(0()) -> c_7()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_7) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [0]
                even^#(x1) = [2 2] x1 + [4]
                             [6 2]      [0]
                c_7() = [1]
                        [0]
                c_9(x1) = [1 0] x1 + [3]
                          [2 0]      [3]
           
           * Path {10}->{9}: YES(?,O(n^2))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(s(0())) -> c_8()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [1]
                      [0]
                s(x1) = [1 1] x1 + [2]
                        [0 1]      [1]
                even^#(x1) = [2 1] x1 + [1]
                             [0 0]      [7]
                c_8() = [1]
                        [1]
                c_9(x1) = [1 1] x1 + [3]
                          [0 0]      [3]
           
           * Path {13}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [3 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [2 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [1]
                div2^#(x1) = [2 2] x1 + [2]
                             [6 0]      [0]
                c_12(x1) = [1 0] x1 + [5]
                           [2 0]      [7]
           
           * Path {13}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(0()) -> c_10()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [0]
                div2^#(x1) = [2 2] x1 + [4]
                             [6 2]      [0]
                c_10() = [1]
                         [0]
                c_12(x1) = [1 0] x1 + [3]
                           [2 0]      [3]
           
           * Path {13}->{12}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(0())) -> c_11()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_11) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [1]
                      [0]
                s(x1) = [1 1] x1 + [2]
                        [0 1]      [1]
                div2^#(x1) = [2 1] x1 + [1]
                             [0 0]      [7]
                c_11() = [1]
                         [1]
                c_12(x1) = [1 1] x1 + [3]
                           [0 0]      [3]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_13) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_13() = [0]
                         [1]
           
           * Path {15}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_14()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_14() = [0]
                         [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
              , 2: cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
              , 3: cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
              , 4: neq^#(0(), 0()) -> c_3()
              , 5: neq^#(0(), s(x)) -> c_4()
              , 6: neq^#(s(x), 0()) -> c_5()
              , 7: neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))
              , 8: even^#(0()) -> c_7()
              , 9: even^#(s(0())) -> c_8()
              , 10: even^#(s(s(x))) -> c_9(even^#(x))
              , 11: div2^#(0()) -> c_10()
              , 12: div2^#(s(0())) -> c_11()
              , 13: div2^#(s(s(x))) -> c_12(div2^#(x))
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [    YES(?,O(1))     ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [   YES(?,O(n^1))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [    YES(?,O(1))     ]
             
             ->{10}                                                      [   YES(?,O(n^1))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {  neq(0(), 0()) -> false()
                , neq(0(), s(x)) -> true()
                , neq(s(x), 0()) -> true()
                , neq(s(x), s(y())) -> neq(x, y())
                , even(0()) -> true()
                , even(s(0())) -> false()
                , even(s(s(x))) -> even(x)
                , div2(0()) -> 0()
                , div2(s(0())) -> 0()
                , div2(s(s(x))) -> s(div2(x))
                , p(0()) -> 0()
                , p(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Induced complexity for the usable rules: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
                  , cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
                  , cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
                  , neq(0(), 0()) -> false()
                  , neq(0(), s(x)) -> true()
                  , neq(s(x), 0()) -> true()
                  , neq(s(x), s(y())) -> neq(x, y())
                  , even(0()) -> true()
                  , even(s(0())) -> false()
                  , even(s(s(x))) -> even(x)
                  , div2(0()) -> 0()
                  , div2(s(0())) -> 0()
                  , div2(s(s(x))) -> s(div2(x))
                  , p(0()) -> 0()
                  , p(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(neq^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                neq^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_3() = [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), s(x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [0] x1 + [2]
                neq^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_4() = [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), 0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [0] x1 + [2]
                neq^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_5() = [0]
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(y) = {}, Uargs(neq^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [2]
                y() = [0]
                neq^#(x1, x2) = [0] x1 + [2] x2 + [0]
                c_6(x1) = [2] x1 + [3]
           
           * Path {10}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [3] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                even^#(x1) = [2] x1 + [0]
                c_9(x1) = [1] x1 + [7]
           
           * Path {10}->{8}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(0()) -> c_7()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_7) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                even^#(x1) = [2] x1 + [4]
                c_7() = [1]
                c_9(x1) = [1] x1 + [0]
           
           * Path {10}->{9}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {even^#(s(0())) -> c_8()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [0]
                even^#(x1) = [0] x1 + [1]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
           
           * Path {13}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [3] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [1] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                div2^#(x1) = [2] x1 + [0]
                c_12(x1) = [1] x1 + [7]
           
           * Path {13}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(0()) -> c_10()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                div2^#(x1) = [2] x1 + [4]
                c_10() = [1]
                c_12(x1) = [1] x1 + [0]
           
           * Path {13}->{12}: YES(?,O(1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(0())) -> c_11()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_11) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [0]
                div2^#(x1) = [0] x1 + [1]
                c_11() = [0]
                c_12(x1) = [1] x1 + [0]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_13) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_13() = [1]
           
           * Path {15}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_14()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [7]
                p^#(x1) = [1] x1 + [7]
                c_14() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputBeerendonk 07 10

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputBeerendonk 07 10

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  cond1(true(), x) -> cond2(even(x), x)
     , cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
     , cond2(false(), x) -> cond1(neq(x, 0()), p(x))
     , neq(0(), 0()) -> false()
     , neq(0(), s(x)) -> true()
     , neq(s(x), 0()) -> true()
     , neq(s(x), s(y())) -> neq(x, y())
     , even(0()) -> true()
     , even(s(0())) -> false()
     , even(s(s(x))) -> even(x)
     , div2(0()) -> 0()
     , div2(s(0())) -> 0()
     , div2(s(s(x))) -> s(div2(x))
     , p(0()) -> 0()
     , p(s(x)) -> x}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
              , 2: cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
              , 3: cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
              , 4: neq^#(0(), 0()) -> c_3()
              , 5: neq^#(0(), s(x)) -> c_4()
              , 6: neq^#(s(x), 0()) -> c_5()
              , 7: neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))
              , 8: even^#(0()) -> c_7()
              , 9: even^#(s(0())) -> c_8()
              , 10: even^#(s(s(x))) -> c_9(even^#(x))
              , 11: div2^#(0()) -> c_10()
              , 12: div2^#(s(0())) -> c_11()
              , 13: div2^#(s(s(x))) -> c_12(div2^#(x))
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [   YES(?,O(n^3))    ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [   YES(?,O(n^2))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^2))    ]
             
             ->{10}                                                      [   YES(?,O(n^2))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^2))    ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  neq(0(), 0()) -> false()
                , neq(0(), s(x)) -> true()
                , neq(s(x), 0()) -> true()
                , neq(s(x), s(y())) -> neq(x, y())
                , even(0()) -> true()
                , even(s(0())) -> false()
                , even(s(s(x))) -> even(x)
                , div2(0()) -> 0()
                , div2(s(0())) -> 0()
                , div2(s(s(x))) -> s(div2(x))
                , p(0()) -> 0()
                , p(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Induced complexity for the usable rules: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(neq^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [3]
                neq^#(x1, x2) = [2 0 2] x1 + [1 0 0] x2 + [3]
                                [0 0 0]      [0 2 2]      [3]
                                [2 0 0]      [0 2 0]      [7]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), s(x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                neq^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [3]
                                [0 0 2]      [2 0 0]      [7]
                                [0 0 0]      [0 2 2]      [7]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), 0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                neq^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [3]
                                [0 0 2]      [2 0 0]      [7]
                                [0 0 0]      [0 2 2]      [7]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [3 0 0]      [0 0 0]      [0]
                                [3 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [2 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(y) = {}, Uargs(neq^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [0]
                        [0 1 0]      [7]
                        [0 0 0]      [0]
                y() = [0]
                      [1]
                      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 1 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [4 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {10}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [3 0 0]      [0]
                             [3 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [2 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 1]      [0]
                        [0 0 1]      [2]
                even^#(x1) = [2 0 2] x1 + [0]
                             [4 0 2]      [0]
                             [0 0 0]      [2]
                c_9(x1) = [1 0 2] x1 + [3]
                          [2 0 0]      [0]
                          [0 0 0]      [2]
           
           * Path {10}->{8}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(0()) -> c_7()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_7) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                even^#(x1) = [2 0 0] x1 + [0]
                             [0 0 2]      [4]
                             [1 2 2]      [0]
                c_7() = [1]
                        [0]
                        [0]
                c_9(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 0 0]      [6]
           
           * Path {10}->{9}: YES(?,O(n^2))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(s(0())) -> c_8()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [0]
                even^#(x1) = [2 3 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 5 0]      [0]
                c_8() = [1]
                        [0]
                        [0]
                c_9(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {13}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [3 0 0]      [0]
                             [3 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [2 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 1]      [0]
                        [0 0 1]      [2]
                div2^#(x1) = [2 0 2] x1 + [0]
                             [4 0 2]      [0]
                             [0 0 0]      [2]
                c_12(x1) = [1 0 2] x1 + [3]
                           [2 0 0]      [0]
                           [0 0 0]      [2]
           
           * Path {13}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(0()) -> c_10()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                div2^#(x1) = [2 0 0] x1 + [0]
                             [0 0 2]      [4]
                             [1 2 2]      [0]
                c_10() = [1]
                         [0]
                         [0]
                c_12(x1) = [1 0 0] x1 + [3]
                           [0 0 0]      [7]
                           [0 0 0]      [6]
           
           * Path {13}->{12}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(0())) -> c_11()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_11) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [0]
                div2^#(x1) = [2 3 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 5 0]      [0]
                c_11() = [1]
                         [0]
                         [0]
                c_12(x1) = [1 0 1] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_13) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                p^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_13() = [0]
                         [1]
                         [1]
           
           * Path {15}: YES(?,O(n^3))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                cond2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                even(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                neq(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                div2(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 3 3] x1 + [0]
                        [0 1 2]      [0]
                        [0 0 1]      [0]
                y() = [0]
                      [0]
                      [0]
                cond1^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond2^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                neq^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                even^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                div2^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12(x1) = [3 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                p^#(x1) = [1 3 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(n^3))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_14(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [2]
                p^#(x1) = [2 2 2] x1 + [3]
                          [2 2 0]      [7]
                          [2 2 2]      [3]
                c_14(x1) = [2 0 0] x1 + [0]
                           [0 0 0]      [1]
                           [0 0 0]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
              , 2: cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
              , 3: cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
              , 4: neq^#(0(), 0()) -> c_3()
              , 5: neq^#(0(), s(x)) -> c_4()
              , 6: neq^#(s(x), 0()) -> c_5()
              , 7: neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))
              , 8: even^#(0()) -> c_7()
              , 9: even^#(s(0())) -> c_8()
              , 10: even^#(s(s(x))) -> c_9(even^#(x))
              , 11: div2^#(0()) -> c_10()
              , 12: div2^#(s(0())) -> c_11()
              , 13: div2^#(s(s(x))) -> c_12(div2^#(x))
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [   YES(?,O(n^2))    ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [   YES(?,O(n^1))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^2))    ]
             
             ->{10}                                                      [   YES(?,O(n^1))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^2))    ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {  neq(0(), 0()) -> false()
                , neq(0(), s(x)) -> true()
                , neq(s(x), 0()) -> true()
                , neq(s(x), s(y())) -> neq(x, y())
                , even(0()) -> true()
                , even(s(0())) -> false()
                , even(s(s(x))) -> even(x)
                , div2(0()) -> 0()
                , div2(s(0())) -> 0()
                , div2(s(s(x))) -> s(div2(x))
                , p(0()) -> 0()
                , p(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Induced complexity for the usable rules: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
                  , cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
                  , cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
                  , neq(0(), 0()) -> false()
                  , neq(0(), s(x)) -> true()
                  , neq(s(x), 0()) -> true()
                  , neq(s(x), s(y())) -> neq(x, y())
                  , even(0()) -> true()
                  , even(s(0())) -> false()
                  , even(s(s(x))) -> even(x)
                  , div2(0()) -> 0()
                  , div2(s(0())) -> 0()
                  , div2(s(s(x))) -> s(div2(x))
                  , p(0()) -> 0()
                  , p(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(neq^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                neq^#(x1, x2) = [2 2] x1 + [0 0] x2 + [7]
                                [2 2]      [0 2]      [3]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), s(x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [0]
                neq^#(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                                [0 0]      [0 0]      [3]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), 0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                neq^#(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                                [0 0]      [0 0]      [3]
                c_5() = [0]
                        [1]
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [3 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [2 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(y) = {}, Uargs(neq^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [1]
                y() = [2]
                      [0]
                neq^#(x1, x2) = [2 1] x1 + [0 0] x2 + [0]
                                [0 1]      [2 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [7]
           
           * Path {10}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [3 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [2 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [1]
                even^#(x1) = [2 2] x1 + [2]
                             [6 0]      [0]
                c_9(x1) = [1 0] x1 + [5]
                          [2 0]      [7]
           
           * Path {10}->{8}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(0()) -> c_7()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_7) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [0]
                even^#(x1) = [2 2] x1 + [4]
                             [6 2]      [0]
                c_7() = [1]
                        [0]
                c_9(x1) = [1 0] x1 + [3]
                          [2 0]      [3]
           
           * Path {10}->{9}: YES(?,O(n^2))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(s(0())) -> c_8()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [1]
                      [0]
                s(x1) = [1 1] x1 + [2]
                        [0 1]      [1]
                even^#(x1) = [2 1] x1 + [1]
                             [0 0]      [7]
                c_8() = [1]
                        [1]
                c_9(x1) = [1 1] x1 + [3]
                          [0 0]      [3]
           
           * Path {13}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [3 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [2 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [1]
                div2^#(x1) = [2 2] x1 + [2]
                             [6 0]      [0]
                c_12(x1) = [1 0] x1 + [5]
                           [2 0]      [7]
           
           * Path {13}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(0()) -> c_10()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [0]
                div2^#(x1) = [2 2] x1 + [4]
                             [6 2]      [0]
                c_10() = [1]
                         [0]
                c_12(x1) = [1 0] x1 + [3]
                           [2 0]      [3]
           
           * Path {13}->{12}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(0())) -> c_11()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_11) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [1]
                      [0]
                s(x1) = [1 1] x1 + [2]
                        [0 1]      [1]
                div2^#(x1) = [2 1] x1 + [1]
                             [0 0]      [7]
                c_11() = [1]
                         [1]
                c_12(x1) = [1 1] x1 + [3]
                           [0 0]      [3]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_13) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_13() = [0]
                         [1]
           
           * Path {15}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                cond2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                even(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                div2(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                false() = [0]
                          [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [0]
                y() = [0]
                      [0]
                cond1^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                cond2^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                neq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                even^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                div2^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11() = [0]
                         [0]
                c_12(x1) = [3 0] x1 + [0]
                           [0 0]      [0]
                p^#(x1) = [1 3] x1 + [0]
                          [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
             Induced complexity for the usable rules: YES(?,O(n^2))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_14(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [0]
                p^#(x1) = [2 0] x1 + [7]
                          [2 0]      [7]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
              , 2: cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
              , 3: cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
              , 4: neq^#(0(), 0()) -> c_3()
              , 5: neq^#(0(), s(x)) -> c_4()
              , 6: neq^#(s(x), 0()) -> c_5()
              , 7: neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))
              , 8: even^#(0()) -> c_7()
              , 9: even^#(s(0())) -> c_8()
              , 10: even^#(s(s(x))) -> c_9(even^#(x))
              , 11: div2^#(0()) -> c_10()
              , 12: div2^#(s(0())) -> c_11()
              , 13: div2^#(s(s(x))) -> c_12(div2^#(x))
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{15}                                                      [   YES(?,O(n^1))    ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [   YES(?,O(n^1))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [    YES(?,O(1))     ]
             
             ->{10}                                                      [   YES(?,O(n^1))    ]
                |
                |->{8}                                                   [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {  neq(0(), 0()) -> false()
                , neq(0(), s(x)) -> true()
                , neq(s(x), 0()) -> true()
                , neq(s(x), s(y())) -> neq(x, y())
                , even(0()) -> true()
                , even(s(0())) -> false()
                , even(s(s(x))) -> even(x)
                , div2(0()) -> 0()
                , div2(s(0())) -> 0()
                , div2(s(s(x))) -> s(div2(x))
                , p(0()) -> 0()
                , p(s(x)) -> x}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Induced complexity for the usable rules: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  cond1^#(true(), x) -> c_0(cond2^#(even(x), x))
                  , cond2^#(false(), x) -> c_2(cond1^#(neq(x, 0()), p(x)))
                  , cond2^#(true(), x) -> c_1(cond1^#(neq(x, 0()), div2(x)))
                  , neq(0(), 0()) -> false()
                  , neq(0(), s(x)) -> true()
                  , neq(s(x), 0()) -> true()
                  , neq(s(x), s(y())) -> neq(x, y())
                  , even(0()) -> true()
                  , even(s(0())) -> false()
                  , even(s(s(x))) -> even(x)
                  , div2(0()) -> 0()
                  , div2(s(0())) -> 0()
                  , div2(s(s(x))) -> s(div2(x))
                  , p(0()) -> 0()
                  , p(s(x)) -> x}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(neq^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                neq^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_3() = [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(0(), s(x)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [0] x1 + [2]
                neq^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_4() = [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), 0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(neq^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [0] x1 + [2]
                neq^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_5() = [0]
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {neq^#(s(x), s(y())) -> c_6(neq^#(x, y()))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(y) = {}, Uargs(neq^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [2]
                y() = [0]
                neq^#(x1, x2) = [0] x1 + [2] x2 + [0]
                c_6(x1) = [2] x1 + [3]
           
           * Path {10}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                even^#(x1) = [2] x1 + [0]
                c_9(x1) = [1] x1 + [7]
           
           * Path {10}->{8}: YES(?,O(n^1))
             -----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(0()) -> c_7()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_7) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                even^#(x1) = [2] x1 + [4]
                c_7() = [1]
                c_9(x1) = [1] x1 + [0]
           
           * Path {10}->{9}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {even^#(s(0())) -> c_8()}
               Weak Rules: {even^#(s(s(x))) -> c_9(even^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [0]
                even^#(x1) = [0] x1 + [1]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
           
           * Path {13}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                div2^#(x1) = [2] x1 + [0]
                c_12(x1) = [1] x1 + [7]
           
           * Path {13}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(0()) -> c_10()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                div2^#(x1) = [2] x1 + [4]
                c_10() = [1]
                c_12(x1) = [1] x1 + [0]
           
           * Path {13}->{12}: YES(?,O(1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {1}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div2^#(s(0())) -> c_11()}
               Weak Rules: {div2^#(s(s(x))) -> c_12(div2^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(s) = {}, Uargs(div2^#) = {}, Uargs(c_11) = {},
                 Uargs(c_12) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [0]
                div2^#(x1) = [0] x1 + [1]
                c_11() = [0]
                c_12(x1) = [1] x1 + [0]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [3] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_13) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_13() = [1]
           
           * Path {15}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following TMI:
               The following argument positions are usable:
                 Uargs(cond1) = {}, Uargs(true) = {}, Uargs(cond2) = {},
                 Uargs(even) = {}, Uargs(neq) = {}, Uargs(0) = {}, Uargs(div2) = {},
                 Uargs(false) = {}, Uargs(p) = {}, Uargs(s) = {}, Uargs(y) = {},
                 Uargs(cond1^#) = {}, Uargs(c_0) = {}, Uargs(cond2^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(neq^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                 Uargs(even^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(div2^#) = {}, Uargs(c_10) = {},
                 Uargs(c_11) = {}, Uargs(c_12) = {}, Uargs(p^#) = {},
                 Uargs(c_13) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cond1(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                cond2(x1, x2) = [0] x1 + [0] x2 + [0]
                even(x1) = [0] x1 + [0]
                neq(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                div2(x1) = [0] x1 + [0]
                false() = [0]
                p(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                y() = [0]
                cond1^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                cond2^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                neq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [3] x1 + [0]
                even^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [3] x1 + [0]
                div2^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11() = [0]
                c_12(x1) = [3] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
             Induced complexity for the usable rules: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_14(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_14) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [5]
                p^#(x1) = [3] x1 + [0]
                c_14(x1) = [3] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.