Tool CaT
stdout:
MAYBE
Problem:
cond(true(),x) -> cond(odd(x),p(p(p(x))))
odd(0()) -> false()
odd(s(0())) -> true()
odd(s(s(x))) -> odd(x)
p(0()) -> 0()
p(s(x)) -> x
Proof:
OpenTool IRC1
stdout:
MAYBE
Tool IRC2
stdout:
MAYBE
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ cond(true(), x) -> cond(odd(x), p(p(p(x))))
, odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
Proof Output:
None of the processors succeeded.
Details of failed attempt(s):
-----------------------------
1) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, 2: odd^#(0()) -> c_1()
, 3: odd^#(s(0())) -> c_2()
, 4: odd^#(s(s(x))) -> c_3(odd^#(x))
, 5: p^#(0()) -> c_4()
, 6: p^#(s(x)) -> c_5()}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{6} [ YES(?,O(1)) ]
->{5} [ YES(?,O(1)) ]
->{4} [ YES(?,O(n^1)) ]
|
|->{2} [ YES(?,O(n^1)) ]
|
`->{3} [ YES(?,O(n^2)) ]
->{1} [ MAYBE ]
Sub-problems:
-------------
* Path {1}: MAYBE
---------------
The usable rules for this path are:
{ odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
The weight gap principle does not apply:
The input cannot be shown compatible
Induced complexity for the usable rules: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
Proof Output:
The input cannot be shown compatible
* Path {4}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[3 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [2 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1 2] x1 + [0]
[0 0] [1]
odd^#(x1) = [2 2] x1 + [2]
[6 0] [0]
c_3(x1) = [1 0] x1 + [5]
[2 0] [7]
* Path {4}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {odd^#(0()) -> c_1()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_1) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [0]
[2]
s(x1) = [1 2] x1 + [1]
[0 0] [0]
odd^#(x1) = [2 2] x1 + [4]
[6 2] [0]
c_1() = [1]
[0]
c_3(x1) = [1 0] x1 + [3]
[2 0] [3]
* Path {4}->{3}: YES(?,O(n^2))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^2))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {odd^#(s(0())) -> c_2()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_2) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
s(x1) = [1 1] x1 + [2]
[0 1] [1]
odd^#(x1) = [2 1] x1 + [1]
[0 0] [7]
c_2() = [1]
[1]
c_3(x1) = [1 1] x1 + [3]
[0 0] [3]
* Path {5}: YES(?,O(1))
---------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_4()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_4) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
[2]
p^#(x1) = [2 0] x1 + [7]
[2 2] [7]
c_4() = [0]
[1]
* Path {6}: YES(?,O(1))
---------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_5()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [0 0] x1 + [2]
[0 0] [2]
p^#(x1) = [2 0] x1 + [7]
[2 2] [7]
c_5() = [0]
[1]
2) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, 2: odd^#(0()) -> c_1()
, 3: odd^#(s(0())) -> c_2()
, 4: odd^#(s(s(x))) -> c_3(odd^#(x))
, 5: p^#(0()) -> c_4()
, 6: p^#(s(x)) -> c_5()}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{6} [ YES(?,O(1)) ]
->{5} [ YES(?,O(1)) ]
->{4} [ YES(?,O(n^1)) ]
|
|->{2} [ YES(?,O(n^1)) ]
|
`->{3} [ YES(?,O(1)) ]
->{1} [ MAYBE ]
Sub-problems:
-------------
* Path {1}: MAYBE
---------------
The usable rules for this path are:
{ odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
The weight gap principle does not apply:
The input cannot be shown compatible
Induced complexity for the usable rules: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
Proof Output:
The input cannot be shown compatible
* Path {4}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [1] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [3] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [1] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
Induced complexity for the usable rules: YES(?,O(n^1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
odd^#(x1) = [2] x1 + [0]
c_3(x1) = [1] x1 + [7]
* Path {4}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {odd^#(0()) -> c_1()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_1) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
s(x1) = [1] x1 + [0]
odd^#(x1) = [2] x1 + [4]
c_1() = [1]
c_3(x1) = [1] x1 + [0]
* Path {4}->{3}: YES(?,O(1))
--------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {odd^#(s(0())) -> c_2()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_2) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [0]
s(x1) = [0] x1 + [0]
odd^#(x1) = [0] x1 + [1]
c_2() = [0]
c_3(x1) = [1] x1 + [0]
* Path {5}: YES(?,O(1))
---------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_4()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_4) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [7]
p^#(x1) = [1] x1 + [7]
c_4() = [1]
* Path {6}: YES(?,O(1))
---------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_5()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [0] x1 + [7]
p^#(x1) = [1] x1 + [7]
c_5() = [1]
3) 'matrix-interpretation of dimension 1' failed due to the following reason:
The input cannot be shown compatible
4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
Tool RC1
stdout:
MAYBE
Tool RC2
stdout:
MAYBE
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ cond(true(), x) -> cond(odd(x), p(p(p(x))))
, odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
Proof Output:
None of the processors succeeded.
Details of failed attempt(s):
-----------------------------
1) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, 2: odd^#(0()) -> c_1()
, 3: odd^#(s(0())) -> c_2()
, 4: odd^#(s(s(x))) -> c_3(odd^#(x))
, 5: p^#(0()) -> c_4()
, 6: p^#(s(x)) -> c_5(x)}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{6} [ YES(?,O(n^2)) ]
->{5} [ YES(?,O(1)) ]
->{4} [ YES(?,O(n^1)) ]
|
|->{2} [ YES(?,O(n^1)) ]
|
`->{3} [ YES(?,O(n^2)) ]
->{1} [ MAYBE ]
Sub-problems:
-------------
* Path {1}: MAYBE
---------------
The usable rules for this path are:
{ odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
The weight gap principle does not apply:
The input cannot be shown compatible
Induced complexity for the usable rules: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
Proof Output:
The input cannot be shown compatible
* Path {4}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[3 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [2 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5(x1) = [3 0] x1 + [0]
[0 0] [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1 2] x1 + [0]
[0 0] [1]
odd^#(x1) = [2 2] x1 + [2]
[6 0] [0]
c_3(x1) = [1 0] x1 + [5]
[2 0] [7]
* Path {4}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5(x1) = [3 0] x1 + [0]
[0 0] [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {odd^#(0()) -> c_1()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_1) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [0]
[2]
s(x1) = [1 2] x1 + [1]
[0 0] [0]
odd^#(x1) = [2 2] x1 + [4]
[6 2] [0]
c_1() = [1]
[0]
c_3(x1) = [1 0] x1 + [3]
[2 0] [3]
* Path {4}->{3}: YES(?,O(n^2))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5(x1) = [3 0] x1 + [0]
[0 0] [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^2))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {odd^#(s(0())) -> c_2()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_2) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
s(x1) = [1 1] x1 + [2]
[0 1] [1]
odd^#(x1) = [2 1] x1 + [1]
[0 0] [7]
c_2() = [1]
[1]
c_3(x1) = [1 1] x1 + [3]
[0 0] [3]
* Path {5}: YES(?,O(1))
---------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5(x1) = [3 0] x1 + [0]
[0 0] [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_4()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_4) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
[2]
p^#(x1) = [2 0] x1 + [7]
[2 2] [7]
c_4() = [0]
[1]
* Path {6}: YES(?,O(n^2))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
odd(x1) = [0 0] x1 + [0]
[0 0] [0]
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
false() = [0]
[0]
s(x1) = [1 1] x1 + [0]
[0 1] [0]
cond^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_0(x1) = [3 0] x1 + [0]
[0 0] [0]
odd^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_1() = [0]
[0]
c_2() = [0]
[0]
c_3(x1) = [3 0] x1 + [0]
[0 0] [0]
p^#(x1) = [3 3] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5(x1) = [1 0] x1 + [0]
[0 0] [0]
Induced complexity for the usable rules: YES(?,O(n^2))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_5(x)}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_5) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1 2] x1 + [2]
[0 0] [0]
p^#(x1) = [2 0] x1 + [7]
[2 0] [7]
c_5(x1) = [1 0] x1 + [0]
[0 0] [1]
2) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, 2: odd^#(0()) -> c_1()
, 3: odd^#(s(0())) -> c_2()
, 4: odd^#(s(s(x))) -> c_3(odd^#(x))
, 5: p^#(0()) -> c_4()
, 6: p^#(s(x)) -> c_5(x)}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{6} [ YES(?,O(n^1)) ]
->{5} [ YES(?,O(1)) ]
->{4} [ YES(?,O(n^1)) ]
|
|->{2} [ YES(?,O(n^1)) ]
|
`->{3} [ YES(?,O(1)) ]
->{1} [ MAYBE ]
Sub-problems:
-------------
* Path {1}: MAYBE
---------------
The usable rules for this path are:
{ odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
The weight gap principle does not apply:
The input cannot be shown compatible
Induced complexity for the usable rules: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ cond^#(true(), x) -> c_0(cond^#(odd(x), p(p(p(x)))))
, odd(0()) -> false()
, odd(s(0())) -> true()
, odd(s(s(x))) -> odd(x)
, p(0()) -> 0()
, p(s(x)) -> x}
Proof Output:
The input cannot be shown compatible
* Path {4}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [1] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5(x1) = [3] x1 + [0]
Induced complexity for the usable rules: YES(?,O(n^1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
odd^#(x1) = [2] x1 + [0]
c_3(x1) = [1] x1 + [7]
* Path {4}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5(x1) = [3] x1 + [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {odd^#(0()) -> c_1()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_1) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
s(x1) = [1] x1 + [0]
odd^#(x1) = [2] x1 + [4]
c_1() = [1]
c_3(x1) = [1] x1 + [0]
* Path {4}->{3}: YES(?,O(1))
--------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {1},
Uargs(p^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5(x1) = [3] x1 + [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {odd^#(s(0())) -> c_2()}
Weak Rules: {odd^#(s(s(x))) -> c_3(odd^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(s) = {}, Uargs(odd^#) = {}, Uargs(c_2) = {},
Uargs(c_3) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [0]
s(x1) = [0] x1 + [0]
odd^#(x1) = [0] x1 + [1]
c_2() = [0]
c_3(x1) = [1] x1 + [0]
* Path {5}: YES(?,O(1))
---------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [0] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [0] x1 + [0]
c_4() = [0]
c_5(x1) = [3] x1 + [0]
Induced complexity for the usable rules: YES(?,O(1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_4()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(0) = {}, Uargs(p^#) = {}, Uargs(c_4) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [7]
p^#(x1) = [1] x1 + [7]
c_4() = [1]
* Path {6}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following TMI:
The following argument positions are usable:
Uargs(cond) = {}, Uargs(true) = {}, Uargs(odd) = {}, Uargs(p) = {},
Uargs(0) = {}, Uargs(false) = {}, Uargs(s) = {},
Uargs(cond^#) = {}, Uargs(c_0) = {}, Uargs(odd^#) = {},
Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
Uargs(c_4) = {}, Uargs(c_5) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
cond(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
odd(x1) = [0] x1 + [0]
p(x1) = [0] x1 + [0]
0() = [0]
false() = [0]
s(x1) = [1] x1 + [0]
cond^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_0(x1) = [3] x1 + [0]
odd^#(x1) = [0] x1 + [0]
c_1() = [0]
c_2() = [0]
c_3(x1) = [3] x1 + [0]
p^#(x1) = [3] x1 + [0]
c_4() = [0]
c_5(x1) = [1] x1 + [0]
Induced complexity for the usable rules: YES(?,O(n^1))
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_5(x)}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_5) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [5]
p^#(x1) = [3] x1 + [0]
c_5(x1) = [3] x1 + [0]
3) 'matrix-interpretation of dimension 1' failed due to the following reason:
The input cannot be shown compatible
4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.