Problem CSR 04 Ex14 Luc06

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex14 Luc06

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex14 Luc06

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  h(X) -> g(X, X)
     , g(a(), X) -> f(b(), X)
     , f(X, X) -> h(a())
     , a() -> b()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X) -> c_0(g^#(X, X))
              , 2: g^#(a(), X) -> c_1(f^#(b(), X))
              , 3: f^#(X, X) -> c_2(h^#(a()))
              , 4: a^#() -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {a() -> b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {1},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_1) = {1},
                 Uargs(f^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                a() = [3]
                      [3]
                      [3]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                b() = [1]
                      [1]
                      [1]
                h^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                g^#(x1, x2) = [1 1 0] x1 + [1 1 3] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [1 1 1] x2 + [0]
                              [0 0 0]      [3 3 3]      [0]
                              [0 0 0]      [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X) -> c_0(g^#(X, X))
                  , f^#(X, X) -> c_2(h^#(a()))
                  , g^#(a(), X) -> c_1(f^#(b(), X))}
               Weak Rules: {a() -> b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_1) = {}, Uargs(f^#) = {},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                        [7]
                c_3() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X) -> c_0(g^#(X, X))
              , 2: g^#(a(), X) -> c_1(f^#(b(), X))
              , 3: f^#(X, X) -> c_2(h^#(a()))
              , 4: a^#() -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {a() -> b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {1},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_1) = {1},
                 Uargs(f^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                a() = [3]
                      [3]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                b() = [1]
                      [1]
                h^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                g^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                              [0 0]      [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                a^#() = [0]
                        [0]
                c_3() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X) -> c_0(g^#(X, X))
                  , f^#(X, X) -> c_2(h^#(a()))
                  , g^#(a(), X) -> c_1(f^#(b(), X))}
               Weak Rules: {a() -> b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_1) = {}, Uargs(f^#) = {},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                a() = [0]
                      [0]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                b() = [0]
                      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a^#() = [0]
                        [0]
                c_3() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                c_3() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X) -> c_0(g^#(X, X))
              , 2: g^#(a(), X) -> c_1(f^#(b(), X))
              , 3: f^#(X, X) -> c_2(h^#(a()))
              , 4: a^#() -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {a() -> b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {1},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_1) = {1},
                 Uargs(f^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                a() = [3]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                b() = [0]
                h^#(x1) = [3] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                g^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                f^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_2(x1) = [1] x1 + [0]
                a^#() = [0]
                c_3() = [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X) -> c_0(g^#(X, X))
                  , f^#(X, X) -> c_2(h^#(a()))
                  , g^#(a(), X) -> c_1(f^#(b(), X))}
               Weak Rules: {a() -> b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_1) = {}, Uargs(f^#) = {},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                a() = [0]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                b() = [0]
                h^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                a^#() = [0]
                c_3() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                c_3() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex14 Luc06

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex14 Luc06

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  h(X) -> g(X, X)
     , g(a(), X) -> f(b(), X)
     , f(X, X) -> h(a())
     , a() -> b()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X) -> c_0(g^#(X, X))
              , 2: g^#(a(), X) -> c_1(f^#(b(), X))
              , 3: f^#(X, X) -> c_2(h^#(a()))
              , 4: a^#() -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {a() -> b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {1},
                 Uargs(c_0) = {1}, Uargs(g^#) = {1, 2}, Uargs(c_1) = {1},
                 Uargs(f^#) = {2}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                a() = [3]
                      [3]
                      [3]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                b() = [1]
                      [1]
                      [1]
                h^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                g^#(x1, x2) = [1 1 0] x1 + [1 1 3] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [1 1 1] x2 + [0]
                              [0 0 0]      [3 3 3]      [0]
                              [0 0 0]      [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X) -> c_0(g^#(X, X))
                  , f^#(X, X) -> c_2(h^#(a()))
                  , g^#(a(), X) -> c_1(f^#(b(), X))}
               Weak Rules: {a() -> b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_1) = {}, Uargs(f^#) = {},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                        [7]
                c_3() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X) -> c_0(g^#(X, X))
              , 2: g^#(a(), X) -> c_1(f^#(b(), X))
              , 3: f^#(X, X) -> c_2(h^#(a()))
              , 4: a^#() -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {a() -> b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {1},
                 Uargs(c_0) = {1}, Uargs(g^#) = {1, 2}, Uargs(c_1) = {1},
                 Uargs(f^#) = {2}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                a() = [3]
                      [3]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                b() = [1]
                      [1]
                h^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                g^#(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                              [0 0]      [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                a^#() = [0]
                        [0]
                c_3() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X) -> c_0(g^#(X, X))
                  , f^#(X, X) -> c_2(h^#(a()))
                  , g^#(a(), X) -> c_1(f^#(b(), X))}
               Weak Rules: {a() -> b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_1) = {}, Uargs(f^#) = {},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                a() = [0]
                      [0]
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                b() = [0]
                      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a^#() = [0]
                        [0]
                c_3() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                c_3() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X) -> c_0(g^#(X, X))
              , 2: g^#(a(), X) -> c_1(f^#(b(), X))
              , 3: f^#(X, X) -> c_2(h^#(a()))
              , 4: a^#() -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1,3,2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3,2}: MAYBE
             -------------------
             
             The usable rules for this path are:
             
               {a() -> b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {1},
                 Uargs(c_0) = {1}, Uargs(g^#) = {1, 2}, Uargs(c_1) = {1},
                 Uargs(f^#) = {2}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                a() = [3]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                b() = [2]
                h^#(x1) = [3] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                g^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_1(x1) = [1] x1 + [0]
                f^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_2(x1) = [1] x1 + [0]
                a^#() = [0]
                c_3() = [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X) -> c_0(g^#(X, X))
                  , f^#(X, X) -> c_2(h^#(a()))
                  , g^#(a(), X) -> c_1(f^#(b(), X))}
               Weak Rules: {a() -> b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(g) = {}, Uargs(f) = {}, Uargs(h^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_1) = {}, Uargs(f^#) = {},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                a() = [0]
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                b() = [0]
                h^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                a^#() = [0]
                c_3() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                c_3() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.