Problem CSR 04 Ex3 3 25 Bor03

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex3 3 25 Bor03

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex3 3 25 Bor03

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  app(nil(), YS) -> YS
     , app(cons(X, XS), YS) -> cons(X, app(XS, YS))
     , from(X) -> cons(X, from(s(X)))
     , zWadr(nil(), YS) -> nil()
     , zWadr(XS, nil()) -> nil()
     , zWadr(cons(X, XS), cons(Y, YS)) ->
       cons(app(Y, cons(X, nil())), zWadr(XS, YS))
     , prefix(L) -> cons(nil(), zWadr(L, prefix(L)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: app^#(nil(), YS) -> c_0()
              , 2: app^#(cons(X, XS), YS) -> c_1(app^#(XS, YS))
              , 3: from^#(X) -> c_2(from^#(s(X)))
              , 4: zWadr^#(nil(), YS) -> c_3()
              , 5: zWadr^#(XS, nil()) -> c_4()
              , 6: zWadr^#(cons(X, XS), cons(Y, YS)) ->
                   c_5(app^#(Y, cons(X, nil())), zWadr^#(XS, YS))
              , 7: prefix^#(L) -> c_6(zWadr^#(L, prefix(L)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{4}                                                   [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{1}                                               [         NA         ]
                    |
                    |->{2}                                               [     inherited      ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    |->{4}                                               [         NA         ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(app) = {}, Uargs(cons) = {}, Uargs(from) = {}, Uargs(s) = {},
                 Uargs(zWadr) = {}, Uargs(prefix) = {}, Uargs(app^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {1},
                 Uargs(zWadr^#) = {}, Uargs(c_5) = {}, Uargs(prefix^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 1]      [0]
                        [0 0 0]      [0]
                zWadr(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                prefix(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [3 3 3] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                zWadr^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                prefix^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{2}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{2}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{4}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: app^#(nil(), YS) -> c_0()
              , 2: app^#(cons(X, XS), YS) -> c_1(app^#(XS, YS))
              , 3: from^#(X) -> c_2(from^#(s(X)))
              , 4: zWadr^#(nil(), YS) -> c_3()
              , 5: zWadr^#(XS, nil()) -> c_4()
              , 6: zWadr^#(cons(X, XS), cons(Y, YS)) ->
                   c_5(app^#(Y, cons(X, nil())), zWadr^#(XS, YS))
              , 7: prefix^#(L) -> c_6(zWadr^#(L, prefix(L)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{4}                                                   [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{1}                                               [         NA         ]
                    |
                    |->{2}                                               [     inherited      ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    |->{4}                                               [         NA         ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(app) = {}, Uargs(cons) = {}, Uargs(from) = {}, Uargs(s) = {},
                 Uargs(zWadr) = {}, Uargs(prefix) = {}, Uargs(app^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {1},
                 Uargs(zWadr^#) = {}, Uargs(c_5) = {}, Uargs(prefix^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                zWadr(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                prefix(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [3 3] x1 + [0]
                             [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zWadr^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                prefix^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{2}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{2}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{4}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: app^#(nil(), YS) -> c_0()
              , 2: app^#(cons(X, XS), YS) -> c_1(app^#(XS, YS))
              , 3: from^#(X) -> c_2(from^#(s(X)))
              , 4: zWadr^#(nil(), YS) -> c_3()
              , 5: zWadr^#(XS, nil()) -> c_4()
              , 6: zWadr^#(cons(X, XS), cons(Y, YS)) ->
                   c_5(app^#(Y, cons(X, nil())), zWadr^#(XS, YS))
              , 7: prefix^#(L) -> c_6(zWadr^#(L, prefix(L)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{4}                                                   [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{1}                                               [         NA         ]
                    |
                    |->{2}                                               [     inherited      ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    |->{4}                                               [         NA         ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(app) = {}, Uargs(cons) = {}, Uargs(from) = {}, Uargs(s) = {},
                 Uargs(zWadr) = {}, Uargs(prefix) = {}, Uargs(app^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {1},
                 Uargs(zWadr^#) = {}, Uargs(c_5) = {}, Uargs(prefix^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                zWadr(x1, x2) = [0] x1 + [0] x2 + [0]
                prefix(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                from^#(x1) = [3] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                zWadr^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                prefix^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{2}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{2}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{4}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex3 3 25 Bor03

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex3 3 25 Bor03

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  app(nil(), YS) -> YS
     , app(cons(X, XS), YS) -> cons(X, app(XS, YS))
     , from(X) -> cons(X, from(s(X)))
     , zWadr(nil(), YS) -> nil()
     , zWadr(XS, nil()) -> nil()
     , zWadr(cons(X, XS), cons(Y, YS)) ->
       cons(app(Y, cons(X, nil())), zWadr(XS, YS))
     , prefix(L) -> cons(nil(), zWadr(L, prefix(L)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: app^#(nil(), YS) -> c_0(YS)
              , 2: app^#(cons(X, XS), YS) -> c_1(X, app^#(XS, YS))
              , 3: from^#(X) -> c_2(X, from^#(s(X)))
              , 4: zWadr^#(nil(), YS) -> c_3()
              , 5: zWadr^#(XS, nil()) -> c_4()
              , 6: zWadr^#(cons(X, XS), cons(Y, YS)) ->
                   c_5(app^#(Y, cons(X, nil())), zWadr^#(XS, YS))
              , 7: prefix^#(L) -> c_6(zWadr^#(L, prefix(L)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{4}                                                   [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{1}                                               [         NA         ]
                    |
                    |->{2}                                               [     inherited      ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    |->{4}                                               [         NA         ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(app) = {}, Uargs(cons) = {}, Uargs(from) = {}, Uargs(s) = {},
                 Uargs(zWadr) = {}, Uargs(prefix) = {}, Uargs(app^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(from^#) = {},
                 Uargs(c_2) = {2}, Uargs(zWadr^#) = {}, Uargs(c_5) = {},
                 Uargs(prefix^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                app(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                s(x1) = [0 1 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 1]      [0]
                zWadr(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                prefix(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                app^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                from^#(x1) = [1 3 3] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_2(x1, x2) = [0 1 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                zWadr^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                prefix^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(X, from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{2}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{2}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{4}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: app^#(nil(), YS) -> c_0(YS)
              , 2: app^#(cons(X, XS), YS) -> c_1(X, app^#(XS, YS))
              , 3: from^#(X) -> c_2(X, from^#(s(X)))
              , 4: zWadr^#(nil(), YS) -> c_3()
              , 5: zWadr^#(XS, nil()) -> c_4()
              , 6: zWadr^#(cons(X, XS), cons(Y, YS)) ->
                   c_5(app^#(Y, cons(X, nil())), zWadr^#(XS, YS))
              , 7: prefix^#(L) -> c_6(zWadr^#(L, prefix(L)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{4}                                                   [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{1}                                               [         NA         ]
                    |
                    |->{2}                                               [     inherited      ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    |->{4}                                               [         NA         ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(app) = {}, Uargs(cons) = {}, Uargs(from) = {}, Uargs(s) = {},
                 Uargs(zWadr) = {}, Uargs(prefix) = {}, Uargs(app^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(from^#) = {},
                 Uargs(c_2) = {2}, Uargs(zWadr^#) = {}, Uargs(c_5) = {},
                 Uargs(prefix^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                app(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
                zWadr(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                prefix(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                app^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                from^#(x1) = [1 3] x1 + [0]
                             [3 3]      [0]
                c_2(x1, x2) = [0 1] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                zWadr^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                prefix^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(X, from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{2}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{2}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{4}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: app^#(nil(), YS) -> c_0(YS)
              , 2: app^#(cons(X, XS), YS) -> c_1(X, app^#(XS, YS))
              , 3: from^#(X) -> c_2(X, from^#(s(X)))
              , 4: zWadr^#(nil(), YS) -> c_3()
              , 5: zWadr^#(XS, nil()) -> c_4()
              , 6: zWadr^#(cons(X, XS), cons(Y, YS)) ->
                   c_5(app^#(Y, cons(X, nil())), zWadr^#(XS, YS))
              , 7: prefix^#(L) -> c_6(zWadr^#(L, prefix(L)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{4}                                                   [         NA         ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{1}                                               [         NA         ]
                    |
                    |->{2}                                               [     inherited      ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    |->{4}                                               [         NA         ]
                    |
                    `->{5}                                               [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(app) = {}, Uargs(cons) = {}, Uargs(from) = {}, Uargs(s) = {},
                 Uargs(zWadr) = {}, Uargs(prefix) = {}, Uargs(app^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(from^#) = {},
                 Uargs(c_2) = {2}, Uargs(zWadr^#) = {}, Uargs(c_5) = {},
                 Uargs(prefix^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                app(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                zWadr(x1, x2) = [0] x1 + [0] x2 + [0]
                prefix(x1) = [0] x1 + [0]
                app^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                from^#(x1) = [3] x1 + [0]
                c_2(x1, x2) = [2] x1 + [1] x2 + [0]
                zWadr^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4() = [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
                prefix^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(X, from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{4}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{2}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {7}->{6}->{2}->{1}.
           
           * Path {7}->{6}->{2}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{4}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}->{5}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
                , zWadr(nil(), YS) -> nil()
                , zWadr(XS, nil()) -> nil()
                , zWadr(cons(X, XS), cons(Y, YS)) ->
                  cons(app(Y, cons(X, nil())), zWadr(XS, YS))
                , app(nil(), YS) -> YS
                , app(cons(X, XS), YS) -> cons(X, app(XS, YS))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.