Problem CSR 04 Ex49 GM04

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex49 GM04

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex49 GM04

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  minus(0(), Y) -> 0()
     , minus(s(X), s(Y)) -> minus(X, Y)
     , geq(X, 0()) -> true()
     , geq(0(), s(Y)) -> false()
     , geq(s(X), s(Y)) -> geq(X, Y)
     , div(0(), s(Y)) -> 0()
     , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
     , if(true(), X, Y) -> X
     , if(false(), X, Y) -> Y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(0(), Y) -> c_0()
              , 2: minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))
              , 3: geq^#(X, 0()) -> c_2()
              , 4: geq^#(0(), s(Y)) -> c_3()
              , 5: geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))
              , 6: div^#(0(), s(Y)) -> c_5()
              , 7: div^#(s(X), s(Y)) ->
                   c_6(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()))
              , 8: if^#(true(), X, Y) -> c_7()
              , 9: if^#(false(), X, Y) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
                |
                |->{8}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                                  [0 0]      [0 0]      [4]
                c_1(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), Y) -> c_0()}
               Weak Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [2]
                minus^#(x1, x2) = [3 2] x1 + [2 3] x2 + [0]
                                  [3 3]      [0 1]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                geq^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [4]
                c_4(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {geq^#(X, 0()) -> c_2()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 1]      [2]
                geq^#(x1, x2) = [2 0] x1 + [2 3] x2 + [0]
                                [0 2]      [3 2]      [0]
                c_2() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {geq^#(0(), s(Y)) -> c_3()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                geq^#(x1, x2) = [2 3] x1 + [0 2] x2 + [0]
                                [0 3]      [0 1]      [0]
                c_3() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div^#(0(), s(Y)) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [0]
                div^#(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                                [0 0]      [0 0]      [3]
                c_5() = [0]
                        [1]
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
                 Uargs(div) = {1}, Uargs(if) = {1, 2}, Uargs(minus^#) = {},
                 Uargs(c_1) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {1}, Uargs(if^#) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 2] x1 + [0 0] x2 + [1]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [3]
                geq(x1, x2) = [0 1] x1 + [0 0] x2 + [1]
                              [0 0]      [0 0]      [1]
                true() = [0]
                         [1]
                false() = [0]
                          [1]
                div(x1, x2) = [1 3] x1 + [0 0] x2 + [1]
                              [0 3]      [0 0]      [0]
                if(x1, x2, x3) = [2 1] x1 + [2 0] x2 + [2 0] x3 + [0]
                                 [0 0]      [0 1]      [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [2 2] x1 + [2 1] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [2 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                                   [3 3]      [3 3]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{8}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
                 Uargs(div) = {1}, Uargs(if) = {1, 2}, Uargs(minus^#) = {},
                 Uargs(c_1) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {1}, Uargs(if^#) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 1] x1 + [0 0] x2 + [1]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [3]
                geq(x1, x2) = [0 2] x1 + [0 0] x2 + [1]
                              [0 0]      [0 0]      [1]
                true() = [0]
                         [1]
                false() = [0]
                          [1]
                div(x1, x2) = [1 3] x1 + [0 0] x2 + [3]
                              [0 1]      [0 0]      [0]
                if(x1, x2, x3) = [2 1] x1 + [2 0] x2 + [1 0] x3 + [0]
                                 [0 0]      [0 1]      [0 2]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
                 Uargs(div) = {1}, Uargs(if) = {1, 2}, Uargs(minus^#) = {},
                 Uargs(c_1) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {1}, Uargs(if^#) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 1] x1 + [0 0] x2 + [1]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [3]
                geq(x1, x2) = [0 2] x1 + [0 0] x2 + [1]
                              [0 0]      [0 0]      [1]
                true() = [0]
                         [1]
                false() = [0]
                          [1]
                div(x1, x2) = [1 3] x1 + [0 0] x2 + [3]
                              [0 1]      [0 0]      [0]
                if(x1, x2, x3) = [2 1] x1 + [2 0] x2 + [1 0] x3 + [0]
                                 [0 0]      [0 1]      [0 2]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(0(), Y) -> c_0()
              , 2: minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))
              , 3: geq^#(X, 0()) -> c_2()
              , 4: geq^#(0(), s(Y)) -> c_3()
              , 5: geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))
              , 6: div^#(0(), s(Y)) -> c_5()
              , 7: div^#(s(X), s(Y)) ->
                   c_6(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()))
              , 8: if^#(true(), X, Y) -> c_7()
              , 9: if^#(false(), X, Y) -> c_8()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{8}                                                   [         NA         ]
                |
                `->{9}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), Y) -> c_0()}
               Weak Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [2]
                c_0() = [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                geq^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {geq^#(X, 0()) -> c_2()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                geq^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_2() = [1]
                c_4(x1) = [1] x1 + [6]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {geq^#(0(), s(Y)) -> c_3()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                geq^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3() = [1]
                c_4(x1) = [1] x1 + [7]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7() = [0]
                c_8() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {div^#(0(), s(Y)) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [0] x1 + [2]
                div^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_5() = [0]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}.
           
           * Path {7}->{8}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{9}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  div^#(s(X), s(Y)) ->
                    c_6(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()))
                  , if^#(false(), X, Y) -> c_8()
                  , minus(0(), Y) -> 0()
                  , minus(s(X), s(Y)) -> minus(X, Y)
                  , geq(X, 0()) -> true()
                  , geq(0(), s(Y)) -> false()
                  , geq(s(X), s(Y)) -> geq(X, Y)
                  , div(0(), s(Y)) -> 0()
                  , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                  , if(true(), X, Y) -> X
                  , if(false(), X, Y) -> Y}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex49 GM04

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex49 GM04

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  minus(0(), Y) -> 0()
     , minus(s(X), s(Y)) -> minus(X, Y)
     , geq(X, 0()) -> true()
     , geq(0(), s(Y)) -> false()
     , geq(s(X), s(Y)) -> geq(X, Y)
     , div(0(), s(Y)) -> 0()
     , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
     , if(true(), X, Y) -> X
     , if(false(), X, Y) -> Y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(0(), Y) -> c_0()
              , 2: minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))
              , 3: geq^#(X, 0()) -> c_2()
              , 4: geq^#(0(), s(Y)) -> c_3()
              , 5: geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))
              , 6: div^#(0(), s(Y)) -> c_5()
              , 7: div^#(s(X), s(Y)) ->
                   c_6(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()))
              , 8: if^#(true(), X, Y) -> c_7(X)
              , 9: if^#(false(), X, Y) -> c_8(Y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{8}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                                  [0 0]      [0 0]      [4]
                c_1(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), Y) -> c_0()}
               Weak Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [2]
                minus^#(x1, x2) = [3 2] x1 + [2 3] x2 + [0]
                                  [3 3]      [0 1]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                geq^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [4]
                c_4(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {geq^#(X, 0()) -> c_2()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 1]      [2]
                geq^#(x1, x2) = [2 0] x1 + [2 3] x2 + [0]
                                [0 2]      [3 2]      [0]
                c_2() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {geq^#(0(), s(Y)) -> c_3()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                geq^#(x1, x2) = [2 3] x1 + [0 2] x2 + [0]
                                [0 3]      [0 1]      [0]
                c_3() = [1]
                        [0]
                c_4(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                geq^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div^#(0(), s(Y)) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [0]
                div^#(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                                [0 0]      [0 0]      [3]
                c_5() = [0]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}.
           
           * Path {7}->{8}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(0(), Y) -> c_0()
              , 2: minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))
              , 3: geq^#(X, 0()) -> c_2()
              , 4: geq^#(0(), s(Y)) -> c_3()
              , 5: geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))
              , 6: div^#(0(), s(Y)) -> c_5()
              , 7: div^#(s(X), s(Y)) ->
                   c_6(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()))
              , 8: if^#(true(), X, Y) -> c_7(X)
              , 9: if^#(false(), X, Y) -> c_8(Y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                |->{8}                                                   [       MAYBE        ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), Y) -> c_0()}
               Weak Rules: {minus^#(s(X), s(Y)) -> c_1(minus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [2]
                c_0() = [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                geq^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4(x1) = [1] x1 + [7]
           
           * Path {5}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {geq^#(X, 0()) -> c_2()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                geq^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_2() = [1]
                c_4(x1) = [1] x1 + [6]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {1}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {geq^#(0(), s(Y)) -> c_3()}
               Weak Rules: {geq^#(s(X), s(Y)) -> c_4(geq^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(geq^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                geq^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3() = [1]
                c_4(x1) = [1] x1 + [7]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(geq) = {}, Uargs(div) = {},
                 Uargs(if) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {},
                 Uargs(geq^#) = {}, Uargs(c_4) = {}, Uargs(div^#) = {},
                 Uargs(c_6) = {}, Uargs(if^#) = {}, Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                geq(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                geq^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {div^#(0(), s(Y)) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(div^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [0] x1 + [2]
                div^#(x1, x2) = [2] x1 + [2] x2 + [7]
                c_5() = [0]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}.
           
           * Path {7}->{8}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  div^#(s(X), s(Y)) ->
                    c_6(if^#(geq(X, Y), s(div(minus(X, Y), s(Y))), 0()))
                  , if^#(true(), X, Y) -> c_7(X)
                  , minus(0(), Y) -> 0()
                  , minus(s(X), s(Y)) -> minus(X, Y)
                  , geq(X, 0()) -> true()
                  , geq(0(), s(Y)) -> false()
                  , geq(s(X), s(Y)) -> geq(X, Y)
                  , div(0(), s(Y)) -> 0()
                  , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                  , if(true(), X, Y) -> X
                  , if(false(), X, Y) -> Y}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(0(), Y) -> 0()
                , minus(s(X), s(Y)) -> minus(X, Y)
                , geq(X, 0()) -> true()
                , geq(0(), s(Y)) -> false()
                , geq(s(X), s(Y)) -> geq(X, Y)
                , div(0(), s(Y)) -> 0()
                , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                , if(true(), X, Y) -> X
                , if(false(), X, Y) -> Y}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.