Problem CSR 04 Ex4 DLMMU04

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex4 DLMMU04

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex4 DLMMU04

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  and(tt(), T) -> T
     , isNatIList(IL) -> isNatList(IL)
     , isNat(0()) -> tt()
     , isNat(s(N)) -> isNat(N)
     , isNat(length(L)) -> isNatList(L)
     , isNatIList(zeros()) -> tt()
     , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
     , isNatList(nil()) -> tt()
     , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
     , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
     , zeros() -> cons(0(), zeros())
     , take(0(), IL) -> uTake1(isNatIList(IL))
     , uTake1(tt()) -> nil()
     , take(s(M), cons(N, IL)) ->
       uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
     , uTake2(tt(), M, N, IL) -> cons(N, take(M, IL))
     , length(cons(N, L)) -> uLength(and(isNat(N), isNatList(L)), L)
     , uLength(tt(), L) -> s(length(L))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), T) -> c_0()
              , 2: isNatIList^#(IL) -> c_1(isNatList^#(IL))
              , 3: isNat^#(0()) -> c_2()
              , 4: isNat^#(s(N)) -> c_3(isNat^#(N))
              , 5: isNat^#(length(L)) -> c_4(isNatList^#(L))
              , 6: isNatIList^#(zeros()) -> c_5()
              , 7: isNatIList^#(cons(N, IL)) ->
                   c_6(and^#(isNat(N), isNatIList(IL)))
              , 8: isNatList^#(nil()) -> c_7()
              , 9: isNatList^#(cons(N, L)) -> c_8(and^#(isNat(N), isNatList(L)))
              , 10: isNatList^#(take(N, IL)) ->
                    c_9(and^#(isNat(N), isNatIList(IL)))
              , 11: zeros^#() -> c_10(zeros^#())
              , 12: take^#(0(), IL) -> c_11(uTake1^#(isNatIList(IL)))
              , 13: uTake1^#(tt()) -> c_12()
              , 14: take^#(s(M), cons(N, IL)) ->
                    c_13(uTake2^#(and(isNat(M), and(isNat(N), isNatIList(IL))),
                                  M,
                                  N,
                                  IL))
              , 15: uTake2^#(tt(), M, N, IL) -> c_14(take^#(M, IL))
              , 16: length^#(cons(N, L)) ->
                    c_15(uLength^#(and(isNat(N), isNatList(L)), L))
              , 17: uLength^#(tt(), L) -> c_16(length^#(L))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{16,17}                                                   [         NA         ]
             
             ->{14,15}                                                   [         NA         ]
                |
                `->{12}                                                  [         NA         ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [       MAYBE        ]
             
             ->{7}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{6}                                                       [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
                    |
                    |->{8}                                               [         NA         ]
                    |
                    |->{9}                                               [         NA         ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    `->{10}                                              [         NA         ]
                        |
                        `->{1}                                           [         NA         ]
             
             ->{2}                                                       [         NA         ]
                |
                |->{8}                                                   [         NA         ]
                |
                |->{9}                                                   [         NA         ]
                |   |
                |   `->{1}                                               [         NA         ]
                |
                `->{10}                                                  [         NA         ]
                    |
                    `->{1}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [3 3] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [1 1] x1 + [0]
                                  [3 3]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{8}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [2 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 1]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [2 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [2 1] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [2 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [2 0] x1 + [2 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}: NA
             ------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [2 2] x1 + [3]
                                 [2 2]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [1 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [2 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [2 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 1] x1 + [1 1] x2 + [2]
                               [0 1]      [0 1]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 2] x2 + [3]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [2 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}->{1}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                              [0 2]      [0 1]      [0]
                tt() = [0]
                       [1]
                isNatIList(x1) = [3 2] x1 + [2]
                                 [3 3]      [2]
                isNatList(x1) = [3 0] x1 + [0]
                                [3 0]      [1]
                isNat(x1) = [2 0] x1 + [1]
                            [1 0]      [1]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [1]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 3] x2 + [1]
                               [0 0]      [0 0]      [3]
                nil() = [3]
                        [0]
                take(x1, x2) = [1 0] x1 + [1 3] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [3 3] x1 + [0]
                              [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {1}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [2 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {1}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [2 0] x1 + [1]
                                 [2 0]      [1]
                isNatList(x1) = [2 0] x1 + [0]
                                [1 0]      [1]
                isNat(x1) = [2 0] x1 + [1]
                            [2 0]      [1]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 1] x2 + [3]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {1},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [2 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 0] x2 + [2]
                               [3 0]      [3 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [3 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 3] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}->{1}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {1},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 2] x1 + [3]
                                 [1 0]      [0]
                isNatList(x1) = [3 2] x1 + [0]
                                [1 0]      [0]
                isNat(x1) = [1 0] x1 + [1]
                            [1 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 2] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                               [0 0]      [0 1]      [2]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [2 0]      [0 1]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {1}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 2] x1 + [2]
                                 [0 0]      [0]
                isNatList(x1) = [3 1] x1 + [1]
                                [0 0]      [0]
                isNat(x1) = [1 0] x1 + [2]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 1] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 3] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [2]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [1 3] x2 + [2]
                               [2 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [3 3] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {1}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 3] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [2 0] x1 + [2 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: MAYBE
             ----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {1}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {zeros^#() -> c_10(zeros^#())}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {14,15}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {1}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 2]      [0]
                tt() = [1]
                       [0]
                isNatIList(x1) = [0 2] x1 + [2]
                                 [0 0]      [0]
                isNatList(x1) = [0 2] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 1] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [1]
                length(x1) = [0 0] x1 + [0]
                             [0 2]      [2]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 1] x1 + [1 3] x2 + [0]
                               [0 1]      [0 1]      [1]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 1]      [0 2]      [2]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake2^#(x1, x2, x3, x4) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [1 1] x4 + [0]
                                           [3 3]      [3 3]      [3 3]      [3 3]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {1}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [2]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake1^#(x1) = [1 3] x1 + [0]
                               [3 3]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake2^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {1}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [1 1] x1 + [3]
                                 [0 0]      [0]
                isNatList(x1) = [1 1] x1 + [2]
                                [0 0]      [0]
                isNat(x1) = [1 0] x1 + [3]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 1] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [3]
                nil() = [0]
                        [0]
                take(x1, x2) = [2 0] x1 + [1 0] x2 + [3]
                               [0 0]      [0 2]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake1^#(x1) = [3 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake2^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {16,17}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {1},
                 Uargs(uLength^#) = {1}, Uargs(c_16) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                tt() = [1]
                       [0]
                isNatIList(x1) = [0 1] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [0 1] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 1] x1 + [0]
                            [3 1]      [3]
                0() = [0]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                length(x1) = [0 0] x1 + [1]
                             [0 2]      [2]
                zeros() = [0]
                          [2]
                cons(x1, x2) = [1 3] x1 + [1 2] x2 + [0]
                               [0 1]      [0 1]      [1]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 1]      [0 1]      [2]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                length^#(x1) = [1 1] x1 + [0]
                               [3 3]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uLength^#(x1, x2) = [2 0] x1 + [1 1] x2 + [0]
                                    [3 3]      [3 3]      [0]
                c_16(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), T) -> c_0()
              , 2: isNatIList^#(IL) -> c_1(isNatList^#(IL))
              , 3: isNat^#(0()) -> c_2()
              , 4: isNat^#(s(N)) -> c_3(isNat^#(N))
              , 5: isNat^#(length(L)) -> c_4(isNatList^#(L))
              , 6: isNatIList^#(zeros()) -> c_5()
              , 7: isNatIList^#(cons(N, IL)) ->
                   c_6(and^#(isNat(N), isNatIList(IL)))
              , 8: isNatList^#(nil()) -> c_7()
              , 9: isNatList^#(cons(N, L)) -> c_8(and^#(isNat(N), isNatList(L)))
              , 10: isNatList^#(take(N, IL)) ->
                    c_9(and^#(isNat(N), isNatIList(IL)))
              , 11: zeros^#() -> c_10(zeros^#())
              , 12: take^#(0(), IL) -> c_11(uTake1^#(isNatIList(IL)))
              , 13: uTake1^#(tt()) -> c_12()
              , 14: take^#(s(M), cons(N, IL)) ->
                    c_13(uTake2^#(and(isNat(M), and(isNat(N), isNatIList(IL))),
                                  M,
                                  N,
                                  IL))
              , 15: uTake2^#(tt(), M, N, IL) -> c_14(take^#(M, IL))
              , 16: length^#(cons(N, L)) ->
                    c_15(uLength^#(and(isNat(N), isNatList(L)), L))
              , 17: uLength^#(tt(), L) -> c_16(length^#(L))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{16,17}                                                   [         NA         ]
             
             ->{14,15}                                                   [         NA         ]
                |
                `->{12}                                                  [         NA         ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [       MAYBE        ]
             
             ->{7}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{6}                                                       [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
                    |
                    |->{8}                                               [         NA         ]
                    |
                    |->{9}                                               [         NA         ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    `->{10}                                              [         NA         ]
                        |
                        `->{1}                                           [         NA         ]
             
             ->{2}                                                       [         NA         ]
                |
                |->{8}                                                   [         NA         ]
                |
                |->{9}                                                   [         NA         ]
                |   |
                |   `->{1}                                               [         NA         ]
                |
                `->{10}                                                  [         NA         ]
                    |
                    `->{1}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [3] x1 + [0]
                c_1(x1) = [3] x1 + [0]
                isNatList^#(x1) = [1] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{8}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [1] x1 + [1]
                isNatList(x1) = [1] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [2] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [3] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [1] x2 + [2]
                tt() = [0]
                isNatIList(x1) = [2] x1 + [2]
                isNatList(x1) = [2] x1 + [1]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}: NA
             ------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [2] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [3] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}->{1}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [1]
                isNatIList(x1) = [1] x1 + [3]
                isNatList(x1) = [1] x1 + [2]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [1] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [3] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {1}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [1] x1 + [1]
                isNatList(x1) = [1] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [3] x1 + [2] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [3] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {1}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [1] x1 + [1] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {1},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [1]
                tt() = [0]
                isNatIList(x1) = [2] x1 + [3]
                isNatList(x1) = [2] x1 + [2]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [2] x1 + [1] x2 + [3]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [2] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}->{1}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {1},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [1] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {1}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [1]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [3] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {1}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [1]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [2] x1 + [1] x2 + [1]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: MAYBE
             ----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {1}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [1] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [0] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {zeros^#() -> c_10(zeros^#())}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {14,15}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {1}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_11(x1) = [1] x1 + [0]
                uTake1^#(x1) = [1] x1 + [0]
                c_12() = [0]
                c_13(x1) = [1] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [1] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(isNatIList^#) = {}, Uargs(c_1) = {}, Uargs(isNatList^#) = {},
                 Uargs(isNat^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {1}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [1] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [1] x1 + [0]
                uTake1^#(x1) = [3] x1 + [0]
                c_12() = [0]
                c_13(x1) = [1] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1) = [1] x1 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {16,17}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex4 DLMMU04

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputCSR 04 Ex4 DLMMU04

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  and(tt(), T) -> T
     , isNatIList(IL) -> isNatList(IL)
     , isNat(0()) -> tt()
     , isNat(s(N)) -> isNat(N)
     , isNat(length(L)) -> isNatList(L)
     , isNatIList(zeros()) -> tt()
     , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
     , isNatList(nil()) -> tt()
     , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
     , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
     , zeros() -> cons(0(), zeros())
     , take(0(), IL) -> uTake1(isNatIList(IL))
     , uTake1(tt()) -> nil()
     , take(s(M), cons(N, IL)) ->
       uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
     , uTake2(tt(), M, N, IL) -> cons(N, take(M, IL))
     , length(cons(N, L)) -> uLength(and(isNat(N), isNatList(L)), L)
     , uLength(tt(), L) -> s(length(L))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), T) -> c_0(T)
              , 2: isNatIList^#(IL) -> c_1(isNatList^#(IL))
              , 3: isNat^#(0()) -> c_2()
              , 4: isNat^#(s(N)) -> c_3(isNat^#(N))
              , 5: isNat^#(length(L)) -> c_4(isNatList^#(L))
              , 6: isNatIList^#(zeros()) -> c_5()
              , 7: isNatIList^#(cons(N, IL)) ->
                   c_6(and^#(isNat(N), isNatIList(IL)))
              , 8: isNatList^#(nil()) -> c_7()
              , 9: isNatList^#(cons(N, L)) -> c_8(and^#(isNat(N), isNatList(L)))
              , 10: isNatList^#(take(N, IL)) ->
                    c_9(and^#(isNat(N), isNatIList(IL)))
              , 11: zeros^#() -> c_10(zeros^#())
              , 12: take^#(0(), IL) -> c_11(uTake1^#(isNatIList(IL)))
              , 13: uTake1^#(tt()) -> c_12()
              , 14: take^#(s(M), cons(N, IL)) ->
                    c_13(uTake2^#(and(isNat(M), and(isNat(N), isNatIList(IL))),
                                  M,
                                  N,
                                  IL))
              , 15: uTake2^#(tt(), M, N, IL) -> c_14(N, take^#(M, IL))
              , 16: length^#(cons(N, L)) ->
                    c_15(uLength^#(and(isNat(N), isNatList(L)), L))
              , 17: uLength^#(tt(), L) -> c_16(length^#(L))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{16,17}                                                   [         NA         ]
             
             ->{14,15}                                                   [         NA         ]
                |
                `->{12}                                                  [         NA         ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [       MAYBE        ]
             
             ->{7}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{6}                                                       [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
                    |
                    |->{8}                                               [         NA         ]
                    |
                    |->{9}                                               [         NA         ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    `->{10}                                              [         NA         ]
                        |
                        `->{1}                                           [         NA         ]
             
             ->{2}                                                       [         NA         ]
                |
                |->{8}                                                   [         NA         ]
                |
                |->{9}                                                   [         NA         ]
                |   |
                |   `->{1}                                               [         NA         ]
                |
                `->{10}                                                  [         NA         ]
                    |
                    `->{1}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [3 3] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [1 1] x1 + [0]
                                  [3 3]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{8}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [2 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 1]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [2 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [2 1] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [1 2] x1 + [2]
                                 [0 0]      [0]
                isNatList(x1) = [1 1] x1 + [1]
                                [0 0]      [0]
                isNat(x1) = [1 0] x1 + [2]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 1] x1 + [0]
                             [0 0]      [0]
                zeros() = [2]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 1]      [2]
                nil() = [0]
                        [0]
                take(x1, x2) = [2 0] x1 + [0 3] x2 + [3]
                               [2 0]      [1 1]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}: NA
             ------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [2 2] x1 + [3]
                                 [2 2]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [1 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [2 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [2 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 1] x1 + [1 1] x2 + [2]
                               [0 1]      [0 1]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 2] x2 + [3]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [2 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}->{1}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 2] x1 + [2]
                                 [0 1]      [0]
                isNatList(x1) = [3 1] x1 + [0]
                                [0 1]      [0]
                isNat(x1) = [1 0] x1 + [1]
                            [2 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 1] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [2]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                               [2 0]      [0 1]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [3 3] x1 + [0]
                              [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [2 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [1 2] x1 + [1]
                                 [2 0]      [0]
                isNatList(x1) = [1 2] x1 + [0]
                                [2 0]      [0]
                isNat(x1) = [1 0] x1 + [1]
                            [2 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 2] x1 + [1]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
                               [0 1]      [0 1]      [3]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                               [1 0]      [0 2]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [1]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [2 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [1 0] x1 + [2 0] x2 + [2]
                               [3 0]      [3 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [3 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 3] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}->{1}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [3 2] x1 + [1 3] x2 + [0]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [1]
                isNatIList(x1) = [3 3] x1 + [3]
                                 [0 0]      [1]
                isNatList(x1) = [3 3] x1 + [0]
                                [0 0]      [1]
                isNat(x1) = [1 0] x1 + [1]
                            [0 0]      [1]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 3] x2 + [3]
                               [0 0]      [0 0]      [3]
                nil() = [3]
                        [0]
                take(x1, x2) = [3 3] x1 + [0 0] x2 + [1]
                               [0 0]      [3 3]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {1}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 2] x1 + [2]
                                 [0 0]      [0]
                isNatList(x1) = [3 1] x1 + [1]
                                [0 0]      [0]
                isNat(x1) = [1 0] x1 + [2]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 1] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 3] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [2]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [1 3] x2 + [2]
                               [2 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [3 3] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {1}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 1]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 2] x1 + [1]
                                 [2 2]      [0]
                isNatList(x1) = [3 1] x1 + [0]
                                [2 2]      [0]
                isNat(x1) = [1 0] x1 + [1]
                            [3 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [3 2] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [2]
                nil() = [0]
                        [2]
                take(x1, x2) = [2 0] x1 + [0 3] x2 + [2]
                               [0 0]      [3 2]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [3 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: MAYBE
             ----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {1}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                isNatList(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                length(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                nil() = [0]
                        [0]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {zeros^#() -> c_10(zeros^#())}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {14,15}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {2}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [0 1] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [0 1] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 1] x1 + [0]
                            [2 0]      [0]
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [1]
                length(x1) = [0 0] x1 + [2]
                             [0 2]      [1]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 3] x1 + [1 3] x2 + [0]
                               [0 1]      [0 1]      [2]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 1]      [0 1]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake2^#(x1, x2, x3, x4) = [2 0] x1 + [1 0] x2 + [0 0] x3 + [1 2] x4 + [0]
                                           [3 3]      [3 3]      [3 3]      [3 3]      [0]
                c_14(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {2}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [3 0] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [2 0] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [2 0] x1 + [2]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                               [0 0]      [0 0]      [0]
                nil() = [2]
                        [0]
                take(x1, x2) = [2 2] x1 + [2 0] x2 + [3]
                               [0 0]      [0 0]      [0]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake1^#(x1) = [1 3] x1 + [0]
                               [3 3]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake2^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {2}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 2]      [0]
                tt() = [0]
                       [0]
                isNatIList(x1) = [1 1] x1 + [3]
                                 [0 0]      [0]
                isNatList(x1) = [1 1] x1 + [2]
                                [0 0]      [0]
                isNat(x1) = [1 0] x1 + [3]
                            [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                length(x1) = [1 1] x1 + [0]
                             [0 0]      [0]
                zeros() = [0]
                          [0]
                cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                               [0 0]      [0 1]      [3]
                nil() = [0]
                        [0]
                take(x1, x2) = [2 0] x1 + [1 0] x2 + [3]
                               [0 0]      [0 2]      [3]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake1^#(x1) = [3 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uTake2^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                length^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uLength^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {16,17}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {1},
                 Uargs(uLength^#) = {1}, Uargs(c_16) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                tt() = [1]
                       [0]
                isNatIList(x1) = [0 1] x1 + [1]
                                 [0 0]      [0]
                isNatList(x1) = [0 1] x1 + [0]
                                [0 0]      [0]
                isNat(x1) = [0 1] x1 + [0]
                            [3 1]      [3]
                0() = [0]
                      [2]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                length(x1) = [0 0] x1 + [1]
                             [0 2]      [2]
                zeros() = [0]
                          [2]
                cons(x1, x2) = [1 3] x1 + [1 2] x2 + [0]
                               [0 1]      [0 1]      [1]
                nil() = [0]
                        [2]
                take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 1]      [0 1]      [2]
                uTake1(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                uTake2(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                uLength(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatIList^#(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isNatList^#(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                isNat^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                zeros^#() = [0]
                            [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake1^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                uTake2^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_14(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                length^#(x1) = [1 1] x1 + [0]
                               [3 3]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                uLength^#(x1, x2) = [2 0] x1 + [1 1] x2 + [0]
                                    [3 3]      [3 3]      [0]
                c_16(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), T) -> c_0(T)
              , 2: isNatIList^#(IL) -> c_1(isNatList^#(IL))
              , 3: isNat^#(0()) -> c_2()
              , 4: isNat^#(s(N)) -> c_3(isNat^#(N))
              , 5: isNat^#(length(L)) -> c_4(isNatList^#(L))
              , 6: isNatIList^#(zeros()) -> c_5()
              , 7: isNatIList^#(cons(N, IL)) ->
                   c_6(and^#(isNat(N), isNatIList(IL)))
              , 8: isNatList^#(nil()) -> c_7()
              , 9: isNatList^#(cons(N, L)) -> c_8(and^#(isNat(N), isNatList(L)))
              , 10: isNatList^#(take(N, IL)) ->
                    c_9(and^#(isNat(N), isNatIList(IL)))
              , 11: zeros^#() -> c_10(zeros^#())
              , 12: take^#(0(), IL) -> c_11(uTake1^#(isNatIList(IL)))
              , 13: uTake1^#(tt()) -> c_12()
              , 14: take^#(s(M), cons(N, IL)) ->
                    c_13(uTake2^#(and(isNat(M), and(isNat(N), isNatIList(IL))),
                                  M,
                                  N,
                                  IL))
              , 15: uTake2^#(tt(), M, N, IL) -> c_14(N, take^#(M, IL))
              , 16: length^#(cons(N, L)) ->
                    c_15(uLength^#(and(isNat(N), isNatList(L)), L))
              , 17: uLength^#(tt(), L) -> c_16(length^#(L))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{16,17}                                                   [         NA         ]
             
             ->{14,15}                                                   [         NA         ]
                |
                `->{12}                                                  [         NA         ]
                    |
                    `->{13}                                              [         NA         ]
             
             ->{11}                                                      [       MAYBE        ]
             
             ->{7}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
             ->{6}                                                       [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
                    |
                    |->{8}                                               [         NA         ]
                    |
                    |->{9}                                               [         NA         ]
                    |   |
                    |   `->{1}                                           [         NA         ]
                    |
                    `->{10}                                              [         NA         ]
                        |
                        `->{1}                                           [         NA         ]
             
             ->{2}                                                       [         NA         ]
                |
                |->{8}                                                   [         NA         ]
                |
                |->{9}                                                   [         NA         ]
                |   |
                |   `->{1}                                               [         NA         ]
                |
                `->{10}                                                  [         NA         ]
                    |
                    `->{1}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [3] x1 + [0]
                c_1(x1) = [3] x1 + [0]
                isNatList^#(x1) = [1] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{8}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [1] x1 + [1]
                isNatList(x1) = [1] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [2] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [3] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{9}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [1]
                tt() = [0]
                isNatIList(x1) = [2] x1 + [2]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [1] x1 + [1] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}: NA
             ------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [2] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [3] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{10}->{1}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {1},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [1]
                tt() = [0]
                isNatIList(x1) = [2] x1 + [2]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [3] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [1] x1 + [1]
                isNatList(x1) = [1] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [3] x1 + [2] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [3] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{9}->{1}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {1},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [2]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [2]
                isNatList(x1) = [2] x1 + [1]
                isNat(x1) = [2] x1 + [1]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [3]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [3]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [1] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [1]
                tt() = [0]
                isNatIList(x1) = [2] x1 + [3]
                isNatList(x1) = [2] x1 + [2]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [2] x1 + [1] x2 + [3]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [2] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{5}->{10}->{1}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_4) = {1}, Uargs(c_6) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {1}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [2] x1 + [2] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [1] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {1}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [2] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [2] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [1]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [3] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , and(tt(), T) -> T
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {1, 2},
                 Uargs(c_0) = {1}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {1}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_10) = {}, Uargs(take^#) = {},
                 Uargs(c_11) = {}, Uargs(uTake1^#) = {}, Uargs(c_13) = {},
                 Uargs(uTake2^#) = {}, Uargs(c_14) = {}, Uargs(length^#) = {},
                 Uargs(c_15) = {}, Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [1]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                nil() = [3]
                take(x1, x2) = [1] x1 + [1] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {11}: MAYBE
             ----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {1}, Uargs(take^#) = {}, Uargs(c_11) = {},
                 Uargs(uTake1^#) = {}, Uargs(c_13) = {}, Uargs(uTake2^#) = {},
                 Uargs(c_14) = {}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                isNatIList(x1) = [0] x1 + [0]
                isNatList(x1) = [0] x1 + [0]
                isNat(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                length(x1) = [0] x1 + [0]
                zeros() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                nil() = [0]
                take(x1, x2) = [0] x1 + [0] x2 + [0]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [1] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [0] x1 + [0]
                uTake1^#(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13(x1) = [0] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [0] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {zeros^#() -> c_10(zeros^#())}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {14,15}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {2}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [2] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [3] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_11(x1) = [1] x1 + [0]
                uTake1^#(x1) = [1] x1 + [0]
                c_12() = [0]
                c_13(x1) = [1] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [1] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {14,15}->{12}->{13}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNatIList(IL) -> isNatList(IL)
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {1, 2}, Uargs(isNatIList) = {}, Uargs(isNatList) = {},
                 Uargs(isNat) = {}, Uargs(s) = {}, Uargs(length) = {},
                 Uargs(cons) = {}, Uargs(take) = {}, Uargs(uTake1) = {},
                 Uargs(uTake2) = {}, Uargs(uLength) = {}, Uargs(and^#) = {},
                 Uargs(c_0) = {}, Uargs(isNatIList^#) = {}, Uargs(c_1) = {},
                 Uargs(isNatList^#) = {}, Uargs(isNat^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(take^#) = {}, Uargs(c_11) = {1},
                 Uargs(uTake1^#) = {1}, Uargs(c_13) = {1}, Uargs(uTake2^#) = {1},
                 Uargs(c_14) = {2}, Uargs(length^#) = {}, Uargs(c_15) = {},
                 Uargs(uLength^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [1] x1 + [1] x2 + [0]
                tt() = [2]
                isNatIList(x1) = [2] x1 + [1]
                isNatList(x1) = [2] x1 + [0]
                isNat(x1) = [1] x1 + [0]
                0() = [3]
                s(x1) = [1] x1 + [3]
                length(x1) = [3] x1 + [3]
                zeros() = [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [2]
                nil() = [3]
                take(x1, x2) = [1] x1 + [3] x2 + [2]
                uTake1(x1) = [0] x1 + [0]
                uTake2(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                uLength(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                isNatIList^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                isNatList^#(x1) = [0] x1 + [0]
                isNat^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
                zeros^#() = [0]
                c_10(x1) = [0] x1 + [0]
                take^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_11(x1) = [1] x1 + [0]
                uTake1^#(x1) = [3] x1 + [0]
                c_12() = [0]
                c_13(x1) = [1] x1 + [0]
                uTake2^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_14(x1, x2) = [0] x1 + [1] x2 + [0]
                length^#(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                uLength^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {16,17}: NA
             ----------------
             
             The usable rules for this path are:
             
               {  and(tt(), T) -> T
                , isNat(0()) -> tt()
                , isNat(s(N)) -> isNat(N)
                , isNat(length(L)) -> isNatList(L)
                , isNatList(nil()) -> tt()
                , isNatList(cons(N, L)) -> and(isNat(N), isNatList(L))
                , isNatList(take(N, IL)) -> and(isNat(N), isNatIList(IL))
                , isNatIList(IL) -> isNatList(IL)
                , isNatIList(zeros()) -> tt()
                , isNatIList(cons(N, IL)) -> and(isNat(N), isNatIList(IL))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.