Problem CiME 04 ack prolog

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputCiME 04 ack prolog

stdout:

MAYBE

Problem:
 ack_in(0(),n) -> ack_out(s(n))
 ack_in(s(m),0()) -> u11(ack_in(m,s(0())))
 u11(ack_out(n)) -> ack_out(n)
 ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m)
 u21(ack_out(n),m) -> u22(ack_in(m,n))
 u22(ack_out(n)) -> ack_out(n)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputCiME 04 ack prolog

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputCiME 04 ack prolog

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  ack_in(0(), n) -> ack_out(s(n))
     , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
     , u11(ack_out(n)) -> ack_out(n)
     , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
     , u21(ack_out(n), m) -> u22(ack_in(m, n))
     , u22(ack_out(n)) -> ack_out(n)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack_in^#(0(), n) -> c_0()
              , 2: ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
              , 3: u11^#(ack_out(n)) -> c_2()
              , 4: ack_in^#(s(m), s(n)) -> c_3(u21^#(ack_in(s(m), n), m))
              , 5: u21^#(ack_out(n), m) -> c_4(u22^#(ack_in(m, n)))
              , 6: u22^#(ack_out(n)) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [     inherited      ]
                |
                `->{5}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack_in) = {}, Uargs(ack_out) = {}, Uargs(s) = {},
                 Uargs(u11) = {}, Uargs(u21) = {}, Uargs(u22) = {},
                 Uargs(ack_in^#) = {}, Uargs(c_1) = {}, Uargs(u11^#) = {},
                 Uargs(c_3) = {}, Uargs(u21^#) = {}, Uargs(c_4) = {},
                 Uargs(u22^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack_in(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ack_out(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u11(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u21(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                u22(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ack_in^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u11^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u21^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u22^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack_in^#(0(), n) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(ack_in^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                ack_in^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                   [2 2 0]      [0 0 0]      [3]
                                   [2 2 2]      [0 0 0]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}.
           
           * Path {2}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack_in^#(0(), n) -> c_0()
              , 2: ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
              , 3: u11^#(ack_out(n)) -> c_2()
              , 4: ack_in^#(s(m), s(n)) -> c_3(u21^#(ack_in(s(m), n), m))
              , 5: u21^#(ack_out(n), m) -> c_4(u22^#(ack_in(m, n)))
              , 6: u22^#(ack_out(n)) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [     inherited      ]
                |
                `->{5}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack_in) = {}, Uargs(ack_out) = {}, Uargs(s) = {},
                 Uargs(u11) = {}, Uargs(u21) = {}, Uargs(u22) = {},
                 Uargs(ack_in^#) = {}, Uargs(c_1) = {}, Uargs(u11^#) = {},
                 Uargs(c_3) = {}, Uargs(u21^#) = {}, Uargs(c_4) = {},
                 Uargs(u22^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack_in(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ack_out(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u11(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u21(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                u22(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ack_in^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u11^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u21^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u22^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack_in^#(0(), n) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(ack_in^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                ack_in^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                   [2 2]      [0 0]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}.
           
           * Path {2}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
                  , u11^#(ack_out(n)) -> c_2()
                  , ack_in(0(), n) -> ack_out(s(n))
                  , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                  , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                  , u11(ack_out(n)) -> ack_out(n)
                  , u21(ack_out(n), m) -> u22(ack_in(m, n))
                  , u22(ack_out(n)) -> ack_out(n)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack_in^#(0(), n) -> c_0()
              , 2: ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
              , 3: u11^#(ack_out(n)) -> c_2()
              , 4: ack_in^#(s(m), s(n)) -> c_3(u21^#(ack_in(s(m), n), m))
              , 5: u21^#(ack_out(n), m) -> c_4(u22^#(ack_in(m, n)))
              , 6: u22^#(ack_out(n)) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [     inherited      ]
                |
                `->{5}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack_in) = {}, Uargs(ack_out) = {}, Uargs(s) = {},
                 Uargs(u11) = {}, Uargs(u21) = {}, Uargs(u22) = {},
                 Uargs(ack_in^#) = {}, Uargs(c_1) = {}, Uargs(u11^#) = {},
                 Uargs(c_3) = {}, Uargs(u21^#) = {}, Uargs(c_4) = {},
                 Uargs(u22^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack_in(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                ack_out(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                u11(x1) = [0] x1 + [0]
                u21(x1, x2) = [0] x1 + [0] x2 + [0]
                u22(x1) = [0] x1 + [0]
                ack_in^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                u11^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                u21^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                u22^#(x1) = [0] x1 + [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack_in^#(0(), n) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(ack_in^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                ack_in^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_0() = [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}.
           
           * Path {2}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
                  , u11^#(ack_out(n)) -> c_2()
                  , ack_in(0(), n) -> ack_out(s(n))
                  , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                  , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                  , u11(ack_out(n)) -> ack_out(n)
                  , u21(ack_out(n), m) -> u22(ack_in(m, n))
                  , u22(ack_out(n)) -> ack_out(n)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputCiME 04 ack prolog

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputCiME 04 ack prolog

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  ack_in(0(), n) -> ack_out(s(n))
     , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
     , u11(ack_out(n)) -> ack_out(n)
     , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
     , u21(ack_out(n), m) -> u22(ack_in(m, n))
     , u22(ack_out(n)) -> ack_out(n)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack_in^#(0(), n) -> c_0(n)
              , 2: ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
              , 3: u11^#(ack_out(n)) -> c_2(n)
              , 4: ack_in^#(s(m), s(n)) -> c_3(u21^#(ack_in(s(m), n), m))
              , 5: u21^#(ack_out(n), m) -> c_4(u22^#(ack_in(m, n)))
              , 6: u22^#(ack_out(n)) -> c_5(n)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [     inherited      ]
                |
                `->{5}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack_in) = {}, Uargs(ack_out) = {}, Uargs(s) = {},
                 Uargs(u11) = {}, Uargs(u21) = {}, Uargs(u22) = {},
                 Uargs(ack_in^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(u11^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(u21^#) = {}, Uargs(c_4) = {}, Uargs(u22^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack_in(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ack_out(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u11(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u21(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                u22(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ack_in^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u11^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u21^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u22^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack_in^#(0(), n) -> c_0(n)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(ack_in^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [2]
                ack_in^#(x1, x2) = [2 0 2] x1 + [7 7 7] x2 + [7]
                                   [2 0 2]      [7 7 7]      [7]
                                   [2 0 2]      [7 7 7]      [7]
                c_0(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}.
           
           * Path {2}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack_in^#(0(), n) -> c_0(n)
              , 2: ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
              , 3: u11^#(ack_out(n)) -> c_2(n)
              , 4: ack_in^#(s(m), s(n)) -> c_3(u21^#(ack_in(s(m), n), m))
              , 5: u21^#(ack_out(n), m) -> c_4(u22^#(ack_in(m, n)))
              , 6: u22^#(ack_out(n)) -> c_5(n)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [     inherited      ]
                |
                `->{5}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack_in) = {}, Uargs(ack_out) = {}, Uargs(s) = {},
                 Uargs(u11) = {}, Uargs(u21) = {}, Uargs(u22) = {},
                 Uargs(ack_in^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(u11^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(u21^#) = {}, Uargs(c_4) = {}, Uargs(u22^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack_in(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ack_out(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u11(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u21(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                u22(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ack_in^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u11^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u21^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u22^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack_in^#(0(), n) -> c_0(n)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(ack_in^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                ack_in^#(x1, x2) = [2 2] x1 + [7 7] x2 + [7]
                                   [2 2]      [7 7]      [3]
                c_0(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}.
           
           * Path {2}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
                  , u11^#(ack_out(n)) -> c_2(n)
                  , ack_in(0(), n) -> ack_out(s(n))
                  , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                  , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                  , u11(ack_out(n)) -> ack_out(n)
                  , u21(ack_out(n), m) -> u22(ack_in(m, n))
                  , u22(ack_out(n)) -> ack_out(n)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack_in^#(0(), n) -> c_0(n)
              , 2: ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
              , 3: u11^#(ack_out(n)) -> c_2(n)
              , 4: ack_in^#(s(m), s(n)) -> c_3(u21^#(ack_in(s(m), n), m))
              , 5: u21^#(ack_out(n), m) -> c_4(u22^#(ack_in(m, n)))
              , 6: u22^#(ack_out(n)) -> c_5(n)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [     inherited      ]
                |
                `->{5}                                                   [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack_in) = {}, Uargs(ack_out) = {}, Uargs(s) = {},
                 Uargs(u11) = {}, Uargs(u21) = {}, Uargs(u22) = {},
                 Uargs(ack_in^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(u11^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(u21^#) = {}, Uargs(c_4) = {}, Uargs(u22^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack_in(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                ack_out(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                u11(x1) = [0] x1 + [0]
                u21(x1, x2) = [0] x1 + [0] x2 + [0]
                u22(x1) = [0] x1 + [0]
                ack_in^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                u11^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                u21^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                u22^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack_in^#(0(), n) -> c_0(n)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(ack_in^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [5]
                ack_in^#(x1, x2) = [3] x1 + [7] x2 + [0]
                c_0(x1) = [1] x1 + [0]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}.
           
           * Path {2}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  ack_in^#(s(m), 0()) -> c_1(u11^#(ack_in(m, s(0()))))
                  , u11^#(ack_out(n)) -> c_2(n)
                  , ack_in(0(), n) -> ack_out(s(n))
                  , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                  , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                  , u11(ack_out(n)) -> ack_out(n)
                  , u21(ack_out(n), m) -> u22(ack_in(m, n))
                  , u22(ack_out(n)) -> ack_out(n)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{5}->{6}.
           
           * Path {4}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack_in(0(), n) -> ack_out(s(n))
                , ack_in(s(m), 0()) -> u11(ack_in(m, s(0())))
                , ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m)
                , u11(ack_out(n)) -> ack_out(n)
                , u21(ack_out(n), m) -> u22(ack_in(m, n))
                , u22(ack_out(n)) -> ack_out(n)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.