Problem Der95 08

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputDer95 08

stdout:

MAYBE

Problem:
 D(t()) -> 1()
 D(constant()) -> 0()
 D(+(x,y)) -> +(D(x),D(y))
 D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
 D(-(x,y)) -> -(D(x),D(y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 08

stdout:

YES(?,O(n^1))

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 08

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^1))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: D^#(t()) -> c_0()
            , 2: D^#(constant()) -> c_1()
            , 3: D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
            , 4: D^#(*(x, y)) -> c_3(D^#(x), D^#(y))
            , 5: D^#(-(x, y)) -> c_4(D^#(x), D^#(y))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3,5,4}                                                   [   YES(?,O(n^1))    ]
              |
              |->{1}                                                   [   YES(?,O(n^1))    ]
              |
              `->{2}                                                   [   YES(?,O(n^1))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {3,5,4}: YES(?,O(n^1))
           ---------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(D^#) = {}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
               Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [0]
              *(x1, x2) = [1] x1 + [1] x2 + [0]
              -(x1, x2) = [1] x1 + [1] x2 + [0]
              D^#(x1) = [3] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(D^#(x), D^#(y))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              +(x1, x2) = [1] x1 + [1] x2 + [4]
              *(x1, x2) = [1] x1 + [1] x2 + [1]
              -(x1, x2) = [1] x1 + [1] x2 + [4]
              D^#(x1) = [2] x1 + [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [7]
              c_3(x1, x2) = [1] x1 + [1] x2 + [1]
              c_4(x1, x2) = [1] x1 + [1] x2 + [7]
         
         * Path {3,5,4}->{1}: YES(?,O(n^1))
           --------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(D^#) = {}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
               Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {D^#(t()) -> c_0()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(D^#(x), D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              t() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [2]
              *(x1, x2) = [1] x1 + [1] x2 + [1]
              -(x1, x2) = [1] x1 + [1] x2 + [4]
              D^#(x1) = [2] x1 + [1]
              c_0() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [1]
              c_3(x1, x2) = [1] x1 + [1] x2 + [1]
              c_4(x1, x2) = [1] x1 + [1] x2 + [5]
         
         * Path {3,5,4}->{2}: YES(?,O(n^1))
           --------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(D^#) = {}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
               Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {D^#(constant()) -> c_1()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(D^#(x), D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              constant() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [2]
              *(x1, x2) = [1] x1 + [1] x2 + [1]
              -(x1, x2) = [1] x1 + [1] x2 + [4]
              D^#(x1) = [2] x1 + [1]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [1]
              c_3(x1, x2) = [1] x1 + [1] x2 + [1]
              c_4(x1, x2) = [1] x1 + [1] x2 + [5]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputDer95 08

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 08

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^1))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: D^#(t()) -> c_0()
            , 2: D^#(constant()) -> c_1()
            , 3: D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
            , 4: D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))
            , 5: D^#(-(x, y)) -> c_4(D^#(x), D^#(y))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3,5,4}                                                   [   YES(?,O(n^1))    ]
              |
              |->{1}                                                   [   YES(?,O(n^1))    ]
              |
              `->{2}                                                   [   YES(?,O(n^1))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {3,5,4}: YES(?,O(n^1))
           ---------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(D^#) = {}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4},
               Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [0]
              *(x1, x2) = [1] x1 + [1] x2 + [0]
              -(x1, x2) = [1] x1 + [1] x2 + [0]
              D^#(x1) = [2] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              +(x1, x2) = [1] x1 + [1] x2 + [2]
              *(x1, x2) = [1] x1 + [1] x2 + [3]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              D^#(x1) = [3] x1 + [2]
              c_2(x1, x2) = [1] x1 + [1] x2 + [3]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [3]
              c_4(x1, x2) = [1] x1 + [1] x2 + [3]
         
         * Path {3,5,4}->{1}: YES(?,O(n^1))
           --------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(D^#) = {}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4},
               Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {D^#(t()) -> c_0()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              t() = [2]
              +(x1, x2) = [1] x1 + [1] x2 + [0]
              *(x1, x2) = [1] x1 + [1] x2 + [2]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              D^#(x1) = [2] x1 + [0]
              c_0() = [1]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [3]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
         
         * Path {3,5,4}->{2}: YES(?,O(n^1))
           --------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(D^#) = {}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4},
               Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {D^#(constant()) -> c_1()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              constant() = [2]
              +(x1, x2) = [1] x1 + [1] x2 + [0]
              *(x1, x2) = [1] x1 + [1] x2 + [2]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              D^#(x1) = [2] x1 + [0]
              c_1() = [1]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [3]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]

Tool pair1rc

Execution TimeUnknown
Answer
MAYBE
InputDer95 08

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  D^#(t()) -> c_1()
               , D^#(constant()) -> c_2()
               , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  D^#(t()) -> c_1()
                 , D^#(constant()) -> c_2()
                 , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
              Strict Trs:
                {  D(t()) -> 1()
                 , D(constant()) -> 0()
                 , D(+(x, y)) -> +(D(x), D(y))
                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                 , D(-(x, y)) -> -(D(x), D(y))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'pathanalysis' failed due to the following reason:
                     We use following congruence DG for path analysis
                     
                     ->{3,5,4}                                                   [       MAYBE        ]
                        |
                        |->{1}                                                   [         ?          ]
                        |
                        `->{2}                                                   [         ?          ]
                     
                     
                     Here rules are as follows:
                     
                       {  1: D^#(t()) -> c_1()
                        , 2: D^#(constant()) -> c_2()
                        , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                        , 4: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                        , 5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                     
                     * Path {3,5,4}: MAYBE
                       -------------------
                       
                       We consider the following Problem:
                       
                         Strict DPs:
                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                         Strict Trs:
                           {  D(t()) -> 1()
                            , D(constant()) -> 0()
                            , D(+(x, y)) -> +(D(x), D(y))
                            , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                            , D(-(x, y)) -> -(D(x), D(y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: MAYBE
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict DPs:
                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                         Strict Trs:
                           {  D(t()) -> 1()
                            , D(constant()) -> 0()
                            , D(+(x, y)) -> +(D(x), D(y))
                            , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                            , D(-(x, y)) -> -(D(x), D(y))}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component:
                              {  D(t()) -> 1()
                               , D(constant()) -> 0()}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               D(x1) = [0 0] x1 + [2]
                                       [0 0]      [1]
                               t() = [0]
                                     [0]
                               1() = [1]
                                     [1]
                               constant() = [0]
                                            [0]
                               0() = [1]
                                     [1]
                               +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               *(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               -(x1, x2) = [1 2] x1 + [1 2] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               D^#(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_1() = [0]
                                       [0]
                               c_2() = [0]
                                       [0]
                               c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                             [0 1]      [0 1]      [3]
                               c_4(x1, x2, x3, x4) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1 0] x4 + [3]
                                                     [3 2]      [0 1]      [3 3]      [0 1]      [3]
                               c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                             [0 1]      [0 1]      [3]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict DPs:
                                {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                              Strict Trs:
                                {  D(+(x, y)) -> +(D(x), D(y))
                                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                 , D(-(x, y)) -> -(D(x), D(y))}
                              Weak Trs:
                                {  D(t()) -> 1()
                                 , D(constant()) -> 0()}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: MAYBE
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              The processor is inapplicable since the strict component of the
                              input problem is not empty
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              Strict DPs:
                                {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                              Strict Trs:
                                {  D(+(x, y)) -> +(D(x), D(y))
                                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                 , D(-(x, y)) -> -(D(x), D(y))}
                              Weak Trs:
                                {  D(t()) -> 1()
                                 , D(constant()) -> 0()}
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                 
                                   The weightgap principle does not apply
                                 
                                 We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                 
                                 Strict DPs:
                                   {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                    , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                 Strict Trs:
                                   {  D(+(x, y)) -> +(D(x), D(y))
                                    , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                    , D(-(x, y)) -> -(D(x), D(y))}
                                 Weak Trs:
                                   {  D(t()) -> 1()
                                    , D(constant()) -> 0()}
                                 StartTerms: basic terms
                                 Strategy: none
                                 
                                   The weightgap principle applies, where following rules are oriented strictly:
                                   
                                   Dependency Pairs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                   
                                   Interpretation:
                                   ---------------
                                     The following argument positions are usable:
                                       Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                       Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                       Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                     We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                     Interpretation Functions:
                                      D(x1) = [0 0 0] x1 + [0]
                                              [0 0 0]      [0]
                                              [0 0 0]      [0]
                                      t() = [0]
                                            [0]
                                            [0]
                                      1() = [0]
                                            [0]
                                            [0]
                                      constant() = [0]
                                                   [0]
                                                   [0]
                                      0() = [0]
                                            [0]
                                            [0]
                                      +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                  [0 0 0]      [0 0 0]      [0]
                                                  [0 0 1]      [0 0 1]      [0]
                                      *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                  [0 0 0]      [0 0 0]      [0]
                                                  [0 0 1]      [0 0 1]      [0]
                                      -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                  [0 0 0]      [0 0 0]      [0]
                                                  [0 0 1]      [0 0 1]      [1]
                                      D^#(x1) = [0 0 1] x1 + [0]
                                                [0 0 0]      [0]
                                                [0 0 0]      [0]
                                      c_1() = [0]
                                              [0]
                                              [0]
                                      c_2() = [0]
                                              [0]
                                              [0]
                                      c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                    [0 1 0]      [0 1 0]      [3]
                                                    [0 0 1]      [0 0 1]      [3]
                                      c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [3]
                                                            [3 0 0]      [0 1 0]      [0 0 2]      [0 1 0]      [2]
                                                            [3 0 3]      [0 0 1]      [0 0 2]      [0 0 1]      [3]
                                      c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                    [0 1 0]      [0 1 0]      [0]
                                                    [0 0 1]      [0 0 1]      [0]
                                   
                                   The strictly oriented rules are moved into the weak component.
                                 
                                 We consider the following Problem:
                                 
                                   Strict DPs:
                                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                      , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                   Strict Trs:
                                     {  D(+(x, y)) -> +(D(x), D(y))
                                      , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                      , D(-(x, y)) -> -(D(x), D(y))}
                                   Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                   Weak Trs:
                                     {  D(t()) -> 1()
                                      , D(constant()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                 
                                 Certificate: MAYBE
                                 
                                 Application of 'removetails >>> ... >>> ... >>> ...':
                                 -----------------------------------------------------
                                   The processor is inapplicable since the strict component of the
                                   input problem is not empty
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Strict DPs:
                                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                      , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                   Strict Trs:
                                     {  D(+(x, y)) -> +(D(x), D(y))
                                      , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                      , D(-(x, y)) -> -(D(x), D(y))}
                                   Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                   Weak Trs:
                                     {  D(t()) -> 1()
                                      , D(constant()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                      
                                        The weightgap principle does not apply
                                      
                                      We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                      
                                      Strict DPs:
                                        {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                         , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                      Strict Trs:
                                        {  D(+(x, y)) -> +(D(x), D(y))
                                         , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                         , D(-(x, y)) -> -(D(x), D(y))}
                                      Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                      Weak Trs:
                                        {  D(t()) -> 1()
                                         , D(constant()) -> 0()}
                                      StartTerms: basic terms
                                      Strategy: none
                                      
                                        The weightgap principle applies, where following rules are oriented strictly:
                                        
                                        Dependency Pairs:
                                          {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                        
                                        Interpretation:
                                        ---------------
                                          The following argument positions are usable:
                                            Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                            Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                            Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                          We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                          Interpretation Functions:
                                           D(x1) = [0 0 0] x1 + [0]
                                                   [0 0 1]      [0]
                                                   [0 0 0]      [0]
                                           t() = [0]
                                                 [0]
                                                 [0]
                                           1() = [0]
                                                 [0]
                                                 [0]
                                           constant() = [0]
                                                        [0]
                                                        [0]
                                           0() = [0]
                                                 [0]
                                                 [0]
                                           +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                       [0 1 0]      [0 1 0]      [0]
                                                       [0 0 1]      [0 0 1]      [0]
                                           *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                       [0 1 0]      [0 1 3]      [1]
                                                       [0 0 1]      [0 0 0]      [0]
                                           -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                       [0 1 3]      [0 1 0]      [0]
                                                       [0 0 0]      [0 0 1]      [3]
                                           D^#(x1) = [0 1 3] x1 + [0]
                                                     [0 0 0]      [0]
                                                     [0 0 0]      [0]
                                           c_1() = [0]
                                                   [0]
                                                   [0]
                                           c_2() = [0]
                                                   [0]
                                                   [0]
                                           c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                         [0 1 0]      [0 1 0]      [2]
                                                         [0 0 1]      [0 0 1]      [3]
                                           c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                 [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                 [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                           c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                         [0 1 0]      [0 1 0]      [0]
                                                         [0 0 1]      [0 0 1]      [0]
                                        
                                        The strictly oriented rules are moved into the weak component.
                                      
                                      We consider the following Problem:
                                      
                                        Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                        Strict Trs:
                                          {  D(+(x, y)) -> +(D(x), D(y))
                                           , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                           , D(-(x, y)) -> -(D(x), D(y))}
                                        Weak DPs:
                                          {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                        Weak Trs:
                                          {  D(t()) -> 1()
                                           , D(constant()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                      
                                      Certificate: MAYBE
                                      
                                      Application of 'removetails >>> ... >>> ... >>> ...':
                                      -----------------------------------------------------
                                        The processor is inapplicable since the strict component of
                                        the input problem is not empty
                                        
                                        We abort the transformation and continue with the subprocessor on the problem
                                        
                                        Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                        Strict Trs:
                                          {  D(+(x, y)) -> +(D(x), D(y))
                                           , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                           , D(-(x, y)) -> -(D(x), D(y))}
                                        Weak DPs:
                                          {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                        Weak Trs:
                                          {  D(t()) -> 1()
                                           , D(constant()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                           
                                             The weightgap principle does not apply
                                           
                                           We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                           
                                           Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                           Strict Trs:
                                             {  D(+(x, y)) -> +(D(x), D(y))
                                              , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                              , D(-(x, y)) -> -(D(x), D(y))}
                                           Weak DPs:
                                             {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                           Weak Trs:
                                             {  D(t()) -> 1()
                                              , D(constant()) -> 0()}
                                           StartTerms: basic terms
                                           Strategy: none
                                           
                                             The weightgap principle applies, where following rules are oriented strictly:
                                             
                                             TRS Component: {D(-(x, y)) -> -(D(x), D(y))}
                                             
                                             Interpretation:
                                             ---------------
                                               The following argument positions are usable:
                                                 Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                                 Uargs(-) = {1, 2}, Uargs(D^#) = {},
                                                 Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4},
                                                 Uargs(c_5) = {1, 2}
                                               We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                               Interpretation Functions:
                                                D(x1) = [0 0 2] x1 + [0]
                                                        [0 0 1]      [0]
                                                        [0 0 1]      [0]
                                                t() = [0]
                                                      [0]
                                                      [0]
                                                1() = [0]
                                                      [0]
                                                      [0]
                                                constant() = [0]
                                                             [0]
                                                             [0]
                                                0() = [0]
                                                      [0]
                                                      [0]
                                                +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                            [0 1 0]      [0 1 0]      [0]
                                                            [0 0 1]      [0 0 1]      [0]
                                                *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                            [0 0 0]      [0 1 0]      [0]
                                                            [0 0 1]      [0 0 1]      [0]
                                                -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                            [0 1 0]      [0 1 0]      [0]
                                                            [0 0 1]      [0 0 1]      [2]
                                                D^#(x1) = [0 0 0] x1 + [0]
                                                          [0 0 0]      [0]
                                                          [0 0 0]      [0]
                                                c_1() = [0]
                                                        [0]
                                                        [0]
                                                c_2() = [0]
                                                        [0]
                                                        [0]
                                                c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                              [0 1 0]      [0 1 0]      [3]
                                                              [0 0 1]      [0 0 1]      [3]
                                                c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                      [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                      [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                              [0 1 0]      [0 1 0]      [0]
                                                              [0 0 1]      [0 0 1]      [0]
                                             
                                             The strictly oriented rules are moved into the weak component.
                                           
                                           We consider the following Problem:
                                           
                                             Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                             Strict Trs:
                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                             Weak DPs:
                                               {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                             Weak Trs:
                                               {  D(-(x, y)) -> -(D(x), D(y))
                                                , D(t()) -> 1()
                                                , D(constant()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                           
                                           Certificate: MAYBE
                                           
                                           Application of 'removetails >>> ... >>> ... >>> ...':
                                           -----------------------------------------------------
                                             The processor is inapplicable since the strict
                                             component of the input problem is not empty
                                             
                                             We abort the transformation and continue with the subprocessor on the problem
                                             
                                             Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                             Strict Trs:
                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                             Weak DPs:
                                               {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                             Weak Trs:
                                               {  D(-(x, y)) -> -(D(x), D(y))
                                                , D(t()) -> 1()
                                                , D(constant()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                             
                                             1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                
                                                  The weightgap principle does not apply
                                                
                                                We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                
                                                Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                                Strict Trs:
                                                  {  D(+(x, y)) -> +(D(x), D(y))
                                                   , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                Weak DPs:
                                                  {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                   , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                Weak Trs:
                                                  {  D(-(x, y)) -> -(D(x), D(y))
                                                   , D(t()) -> 1()
                                                   , D(constant()) -> 0()}
                                                StartTerms: basic terms
                                                Strategy: none
                                                
                                                  The weightgap principle applies, where following rules are oriented strictly:
                                                  
                                                  Dependency Pairs:
                                                    {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                                  
                                                  Interpretation:
                                                  ---------------
                                                    The following argument positions are usable:
                                                      Uargs(D) = {}, Uargs(+) = {1, 2},
                                                      Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                      Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                      Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                                    We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                    Interpretation Functions:
                                                     D(x1) = [0 0 0] x1 + [0]
                                                             [0 0 1]      [0]
                                                             [0 1 0]      [0]
                                                     t() = [0]
                                                           [0]
                                                           [0]
                                                     1() = [0]
                                                           [0]
                                                           [0]
                                                     constant() = [0]
                                                                  [0]
                                                                  [0]
                                                     0() = [0]
                                                           [0]
                                                           [0]
                                                     +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                 [0 0 0]      [0 1 0]      [0]
                                                                 [0 0 1]      [0 0 1]      [2]
                                                     *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                 [0 0 0]      [0 0 1]      [0]
                                                                 [0 0 1]      [0 0 1]      [0]
                                                     -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                 [0 1 0]      [0 1 0]      [2]
                                                                 [0 0 1]      [0 0 1]      [2]
                                                     D^#(x1) = [0 0 2] x1 + [0]
                                                               [0 0 0]      [0]
                                                               [0 0 0]      [0]
                                                     c_1() = [0]
                                                             [0]
                                                             [0]
                                                     c_2() = [0]
                                                             [0]
                                                             [0]
                                                     c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                   [0 1 0]      [0 1 0]      [0]
                                                                   [0 0 1]      [0 0 1]      [0]
                                                     c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                           [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                           [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                     c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                   [0 1 0]      [0 1 0]      [0]
                                                                   [0 0 1]      [0 0 1]      [0]
                                                  
                                                  The strictly oriented rules are moved into the weak component.
                                                
                                                We consider the following Problem:
                                                
                                                  Strict Trs:
                                                    {  D(+(x, y)) -> +(D(x), D(y))
                                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                  Weak DPs:
                                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                  Weak Trs:
                                                    {  D(-(x, y)) -> -(D(x), D(y))
                                                     , D(t()) -> 1()
                                                     , D(constant()) -> 0()}
                                                  StartTerms: basic terms
                                                  Strategy: none
                                                
                                                Certificate: MAYBE
                                                
                                                Application of 'removetails >>> ... >>> ... >>> ...':
                                                -----------------------------------------------------
                                                  The processor is inapplicable since the strict
                                                  component of the input problem is not empty
                                                  
                                                  We abort the transformation and continue with the subprocessor on the problem
                                                  
                                                  Strict Trs:
                                                    {  D(+(x, y)) -> +(D(x), D(y))
                                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                  Weak DPs:
                                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                  Weak Trs:
                                                    {  D(-(x, y)) -> -(D(x), D(y))
                                                     , D(t()) -> 1()
                                                     , D(constant()) -> 0()}
                                                  StartTerms: basic terms
                                                  Strategy: none
                                                  
                                                  1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                     
                                                       The weightgap principle does not apply
                                                     
                                                     We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                     
                                                     Strict Trs:
                                                       {  D(+(x, y)) -> +(D(x), D(y))
                                                        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                     Weak DPs:
                                                       {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                        , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                     Weak Trs:
                                                       {  D(-(x, y)) -> -(D(x), D(y))
                                                        , D(t()) -> 1()
                                                        , D(constant()) -> 0()}
                                                     StartTerms: basic terms
                                                     Strategy: none
                                                     
                                                       The weightgap principle applies, where following rules are oriented strictly:
                                                       
                                                       TRS Component: {D(+(x, y)) -> +(D(x), D(y))}
                                                       
                                                       Interpretation:
                                                       ---------------
                                                         The following argument positions are usable:
                                                           Uargs(D) = {}, Uargs(+) = {1, 2},
                                                           Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                           Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                           Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                                         We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                         Interpretation Functions:
                                                          D(x1) = [0 0 1] x1 + [0]
                                                                  [1 0 1]      [0]
                                                                  [0 1 0]      [0]
                                                          t() = [0]
                                                                [0]
                                                                [0]
                                                          1() = [0]
                                                                [0]
                                                                [0]
                                                          constant() = [0]
                                                                       [0]
                                                                       [0]
                                                          0() = [0]
                                                                [0]
                                                                [0]
                                                          +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                      [0 1 0]      [0 1 0]      [1]
                                                                      [0 0 1]      [0 0 1]      [1]
                                                          *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                      [0 1 0]      [0 1 0]      [1]
                                                                      [0 0 1]      [0 0 1]      [0]
                                                          -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                                      [0 1 0]      [0 1 0]      [2]
                                                                      [0 0 1]      [0 0 1]      [1]
                                                          D^#(x1) = [0 0 0] x1 + [0]
                                                                    [0 0 0]      [0]
                                                                    [0 1 1]      [1]
                                                          c_1() = [0]
                                                                  [0]
                                                                  [0]
                                                          c_2() = [0]
                                                                  [0]
                                                                  [0]
                                                          c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                        [0 1 0]      [0 1 0]      [0]
                                                                        [0 0 1]      [0 0 1]      [1]
                                                          c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                                [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                                [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                          c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                        [0 1 0]      [0 1 0]      [0]
                                                                        [0 0 1]      [0 0 1]      [1]
                                                       
                                                       The strictly oriented rules are moved into the weak component.
                                                     
                                                     We consider the following Problem:
                                                     
                                                       Strict Trs:
                                                         {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                       Weak DPs:
                                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                          , D^#(*(x, y)) ->
                                                            c_4(y, D^#(x), x, D^#(y))
                                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                       Weak Trs:
                                                         {  D(+(x, y)) -> +(D(x), D(y))
                                                          , D(-(x, y)) -> -(D(x), D(y))
                                                          , D(t()) -> 1()
                                                          , D(constant()) -> 0()}
                                                       StartTerms: basic terms
                                                       Strategy: none
                                                     
                                                     Certificate: MAYBE
                                                     
                                                     Application of 'removetails >>> ... >>> ... >>> ...':
                                                     -----------------------------------------------------
                                                       The processor is inapplicable since the
                                                       strict component of the input problem is not
                                                       empty
                                                       
                                                       We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                                       Sub-problem 1:
                                                       --------------
                                                         We consider the problem
                                                         
                                                         Strict Trs:
                                                           {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                         Weak DPs:
                                                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                            , D^#(*(x, y)) ->
                                                              c_4(y, D^#(x), x, D^#(y))
                                                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                         Weak Trs:
                                                           {  D(+(x, y)) -> +(D(x), D(y))
                                                            , D(-(x, y)) -> -(D(x), D(y))
                                                            , D(t()) -> 1()
                                                            , D(constant()) -> 0()}
                                                         StartTerms: basic terms
                                                         Strategy: none
                                                         
                                                         We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                         
                                                           The weightgap principle does not apply
                                                         
                                                         We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                         
                                                         Strict Trs:
                                                           {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                         Weak DPs:
                                                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                            , D^#(*(x, y)) ->
                                                              c_4(y, D^#(x), x, D^#(y))
                                                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                         Weak Trs:
                                                           {  D(+(x, y)) -> +(D(x), D(y))
                                                            , D(-(x, y)) -> -(D(x), D(y))
                                                            , D(t()) -> 1()
                                                            , D(constant()) -> 0()}
                                                         StartTerms: basic terms
                                                         Strategy: none
                                                         
                                                           We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                           
                                                             The weightgap principle does not apply
                                                           
                                                           We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                           
                                                           Strict Trs:
                                                             {D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                           Weak DPs:
                                                             {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                              , D^#(*(x, y)) ->
                                                                c_4(y, D^#(x), x, D^#(y))
                                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                           Weak Trs:
                                                             {  D(+(x, y)) -> +(D(x), D(y))
                                                              , D(-(x, y)) -> -(D(x), D(y))
                                                              , D(t()) -> 1()
                                                              , D(constant()) -> 0()}
                                                           StartTerms: basic terms
                                                           Strategy: none
                                                           
                                                             The weightgap principle does not apply
                                                       
                                                       We abort the transformation and continue with the subprocessor on the problem
                                                       
                                                       Strict Trs:
                                                         {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                       Weak DPs:
                                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                          , D^#(*(x, y)) ->
                                                            c_4(y, D^#(x), x, D^#(y))
                                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                       Weak Trs:
                                                         {  D(+(x, y)) -> +(D(x), D(y))
                                                          , D(-(x, y)) -> -(D(x), D(y))
                                                          , D(t()) -> 1()
                                                          , D(constant()) -> 0()}
                                                       StartTerms: basic terms
                                                       Strategy: none
                                                       
                                                       1) None of the processors succeeded.
                                                          
                                                          Details of failed attempt(s):
                                                          -----------------------------
                                                            1) 'empty' failed due to the following reason:
                                                                 Empty strict component of the problem is NOT empty.
                                                            
                                                            2) 'Fastest' failed due to the following reason:
                                                                 None of the processors succeeded.
                                                                 
                                                                 Details of failed attempt(s):
                                                                 -----------------------------
                                                                   1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                        The input cannot be shown compatible
                                                                   
                                                                   2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                        The input cannot be shown compatible
                                                                   
                                                                   3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                        The input cannot be shown compatible
                                                                   
                                                            
                                                       
                                                  
                                             
                                        
                                   
                              
                         
                     
                     * Path {3,5,4}->{1}: ?
                       --------------------
                       
                       CANNOT find proof of path {3,5,4}->{1}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {3,5,4}->{2}: ?
                       --------------------
                       
                       CANNOT find proof of path {3,5,4}->{2}. Propably computation has been aborted since some other path cannot be solved.
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
MAYBE
InputDer95 08

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  D^#(t()) -> c_1()
               , D^#(constant()) -> c_2()
               , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  D^#(t()) -> c_1()
                 , D^#(constant()) -> c_2()
                 , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
              Strict Trs:
                {  D(t()) -> 1()
                 , D(constant()) -> 0()
                 , D(+(x, y)) -> +(D(x), D(y))
                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                 , D(-(x, y)) -> -(D(x), D(y))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'pathanalysis' failed due to the following reason:
                     We use following congruence DG for path analysis
                     
                     ->{3,5,4}                                                   [       MAYBE        ]
                        |
                        |->{1}                                                   [         ?          ]
                        |
                        `->{2}                                                   [         ?          ]
                     
                     
                     Here rules are as follows:
                     
                       {  1: D^#(t()) -> c_1()
                        , 2: D^#(constant()) -> c_2()
                        , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                        , 4: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                        , 5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                     
                     * Path {3,5,4}: MAYBE
                       -------------------
                       
                       We consider the following Problem:
                       
                         Strict DPs:
                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                         Strict Trs:
                           {  D(t()) -> 1()
                            , D(constant()) -> 0()
                            , D(+(x, y)) -> +(D(x), D(y))
                            , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                            , D(-(x, y)) -> -(D(x), D(y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: MAYBE
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict DPs:
                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                         Strict Trs:
                           {  D(t()) -> 1()
                            , D(constant()) -> 0()
                            , D(+(x, y)) -> +(D(x), D(y))
                            , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                            , D(-(x, y)) -> -(D(x), D(y))}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component:
                              {  D(t()) -> 1()
                               , D(constant()) -> 0()}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               D(x1) = [0 0] x1 + [2]
                                       [0 0]      [1]
                               t() = [0]
                                     [0]
                               1() = [1]
                                     [1]
                               constant() = [0]
                                            [0]
                               0() = [1]
                                     [1]
                               +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               *(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               -(x1, x2) = [1 2] x1 + [1 2] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               D^#(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_1() = [0]
                                       [0]
                               c_2() = [0]
                                       [0]
                               c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                             [0 1]      [0 1]      [3]
                               c_4(x1, x2, x3, x4) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1 0] x4 + [3]
                                                     [3 2]      [0 1]      [3 3]      [0 1]      [3]
                               c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                             [0 1]      [0 1]      [3]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict DPs:
                                {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                              Strict Trs:
                                {  D(+(x, y)) -> +(D(x), D(y))
                                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                 , D(-(x, y)) -> -(D(x), D(y))}
                              Weak Trs:
                                {  D(t()) -> 1()
                                 , D(constant()) -> 0()}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: MAYBE
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              The processor is inapplicable since the strict component of the
                              input problem is not empty
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              Strict DPs:
                                {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                              Strict Trs:
                                {  D(+(x, y)) -> +(D(x), D(y))
                                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                 , D(-(x, y)) -> -(D(x), D(y))}
                              Weak Trs:
                                {  D(t()) -> 1()
                                 , D(constant()) -> 0()}
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                 
                                   The weightgap principle does not apply
                                 
                                 We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                 
                                 Strict DPs:
                                   {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                    , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                 Strict Trs:
                                   {  D(+(x, y)) -> +(D(x), D(y))
                                    , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                    , D(-(x, y)) -> -(D(x), D(y))}
                                 Weak Trs:
                                   {  D(t()) -> 1()
                                    , D(constant()) -> 0()}
                                 StartTerms: basic terms
                                 Strategy: none
                                 
                                   The weightgap principle applies, where following rules are oriented strictly:
                                   
                                   Dependency Pairs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                   
                                   Interpretation:
                                   ---------------
                                     The following argument positions are usable:
                                       Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                       Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                       Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                     We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                     Interpretation Functions:
                                      D(x1) = [0 0 0] x1 + [0]
                                              [0 0 0]      [0]
                                              [0 0 0]      [0]
                                      t() = [0]
                                            [0]
                                            [0]
                                      1() = [0]
                                            [0]
                                            [0]
                                      constant() = [0]
                                                   [0]
                                                   [0]
                                      0() = [0]
                                            [0]
                                            [0]
                                      +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                  [0 0 0]      [0 0 0]      [0]
                                                  [0 0 1]      [0 0 1]      [0]
                                      *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                  [0 0 0]      [0 0 0]      [0]
                                                  [0 0 1]      [0 0 1]      [0]
                                      -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                  [0 0 0]      [0 0 0]      [0]
                                                  [0 0 1]      [0 0 1]      [1]
                                      D^#(x1) = [0 0 1] x1 + [0]
                                                [0 0 0]      [0]
                                                [0 0 0]      [0]
                                      c_1() = [0]
                                              [0]
                                              [0]
                                      c_2() = [0]
                                              [0]
                                              [0]
                                      c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                    [0 1 0]      [0 1 0]      [3]
                                                    [0 0 1]      [0 0 1]      [3]
                                      c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [3]
                                                            [3 0 0]      [0 1 0]      [0 0 2]      [0 1 0]      [2]
                                                            [3 0 3]      [0 0 1]      [0 0 2]      [0 0 1]      [3]
                                      c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                    [0 1 0]      [0 1 0]      [0]
                                                    [0 0 1]      [0 0 1]      [0]
                                   
                                   The strictly oriented rules are moved into the weak component.
                                 
                                 We consider the following Problem:
                                 
                                   Strict DPs:
                                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                      , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                   Strict Trs:
                                     {  D(+(x, y)) -> +(D(x), D(y))
                                      , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                      , D(-(x, y)) -> -(D(x), D(y))}
                                   Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                   Weak Trs:
                                     {  D(t()) -> 1()
                                      , D(constant()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                 
                                 Certificate: MAYBE
                                 
                                 Application of 'removetails >>> ... >>> ... >>> ...':
                                 -----------------------------------------------------
                                   The processor is inapplicable since the strict component of the
                                   input problem is not empty
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Strict DPs:
                                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                      , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                   Strict Trs:
                                     {  D(+(x, y)) -> +(D(x), D(y))
                                      , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                      , D(-(x, y)) -> -(D(x), D(y))}
                                   Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                   Weak Trs:
                                     {  D(t()) -> 1()
                                      , D(constant()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                      
                                        The weightgap principle does not apply
                                      
                                      We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                      
                                      Strict DPs:
                                        {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                         , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                      Strict Trs:
                                        {  D(+(x, y)) -> +(D(x), D(y))
                                         , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                         , D(-(x, y)) -> -(D(x), D(y))}
                                      Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                      Weak Trs:
                                        {  D(t()) -> 1()
                                         , D(constant()) -> 0()}
                                      StartTerms: basic terms
                                      Strategy: none
                                      
                                        The weightgap principle applies, where following rules are oriented strictly:
                                        
                                        Dependency Pairs:
                                          {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                        
                                        Interpretation:
                                        ---------------
                                          The following argument positions are usable:
                                            Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                            Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                            Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                          We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                          Interpretation Functions:
                                           D(x1) = [0 0 0] x1 + [0]
                                                   [0 0 1]      [0]
                                                   [0 0 0]      [0]
                                           t() = [0]
                                                 [0]
                                                 [0]
                                           1() = [0]
                                                 [0]
                                                 [0]
                                           constant() = [0]
                                                        [0]
                                                        [0]
                                           0() = [0]
                                                 [0]
                                                 [0]
                                           +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                       [0 1 0]      [0 1 0]      [0]
                                                       [0 0 1]      [0 0 1]      [0]
                                           *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                       [0 1 0]      [0 1 3]      [1]
                                                       [0 0 1]      [0 0 0]      [0]
                                           -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                       [0 1 3]      [0 1 0]      [0]
                                                       [0 0 0]      [0 0 1]      [3]
                                           D^#(x1) = [0 1 3] x1 + [0]
                                                     [0 0 0]      [0]
                                                     [0 0 0]      [0]
                                           c_1() = [0]
                                                   [0]
                                                   [0]
                                           c_2() = [0]
                                                   [0]
                                                   [0]
                                           c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                         [0 1 0]      [0 1 0]      [2]
                                                         [0 0 1]      [0 0 1]      [3]
                                           c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                 [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                 [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                           c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                         [0 1 0]      [0 1 0]      [0]
                                                         [0 0 1]      [0 0 1]      [0]
                                        
                                        The strictly oriented rules are moved into the weak component.
                                      
                                      We consider the following Problem:
                                      
                                        Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                        Strict Trs:
                                          {  D(+(x, y)) -> +(D(x), D(y))
                                           , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                           , D(-(x, y)) -> -(D(x), D(y))}
                                        Weak DPs:
                                          {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                        Weak Trs:
                                          {  D(t()) -> 1()
                                           , D(constant()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                      
                                      Certificate: MAYBE
                                      
                                      Application of 'removetails >>> ... >>> ... >>> ...':
                                      -----------------------------------------------------
                                        The processor is inapplicable since the strict component of
                                        the input problem is not empty
                                        
                                        We abort the transformation and continue with the subprocessor on the problem
                                        
                                        Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                        Strict Trs:
                                          {  D(+(x, y)) -> +(D(x), D(y))
                                           , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                           , D(-(x, y)) -> -(D(x), D(y))}
                                        Weak DPs:
                                          {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                        Weak Trs:
                                          {  D(t()) -> 1()
                                           , D(constant()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                           
                                             The weightgap principle does not apply
                                           
                                           We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                           
                                           Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                           Strict Trs:
                                             {  D(+(x, y)) -> +(D(x), D(y))
                                              , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                              , D(-(x, y)) -> -(D(x), D(y))}
                                           Weak DPs:
                                             {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                           Weak Trs:
                                             {  D(t()) -> 1()
                                              , D(constant()) -> 0()}
                                           StartTerms: basic terms
                                           Strategy: none
                                           
                                             The weightgap principle applies, where following rules are oriented strictly:
                                             
                                             TRS Component: {D(-(x, y)) -> -(D(x), D(y))}
                                             
                                             Interpretation:
                                             ---------------
                                               The following argument positions are usable:
                                                 Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                                 Uargs(-) = {1, 2}, Uargs(D^#) = {},
                                                 Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4},
                                                 Uargs(c_5) = {1, 2}
                                               We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                               Interpretation Functions:
                                                D(x1) = [0 0 2] x1 + [0]
                                                        [0 0 1]      [0]
                                                        [0 0 1]      [0]
                                                t() = [0]
                                                      [0]
                                                      [0]
                                                1() = [0]
                                                      [0]
                                                      [0]
                                                constant() = [0]
                                                             [0]
                                                             [0]
                                                0() = [0]
                                                      [0]
                                                      [0]
                                                +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                            [0 1 0]      [0 1 0]      [0]
                                                            [0 0 1]      [0 0 1]      [0]
                                                *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                            [0 0 0]      [0 1 0]      [0]
                                                            [0 0 1]      [0 0 1]      [0]
                                                -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                            [0 1 0]      [0 1 0]      [0]
                                                            [0 0 1]      [0 0 1]      [2]
                                                D^#(x1) = [0 0 0] x1 + [0]
                                                          [0 0 0]      [0]
                                                          [0 0 0]      [0]
                                                c_1() = [0]
                                                        [0]
                                                        [0]
                                                c_2() = [0]
                                                        [0]
                                                        [0]
                                                c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                              [0 1 0]      [0 1 0]      [3]
                                                              [0 0 1]      [0 0 1]      [3]
                                                c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                      [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                      [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                              [0 1 0]      [0 1 0]      [0]
                                                              [0 0 1]      [0 0 1]      [0]
                                             
                                             The strictly oriented rules are moved into the weak component.
                                           
                                           We consider the following Problem:
                                           
                                             Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                             Strict Trs:
                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                             Weak DPs:
                                               {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                             Weak Trs:
                                               {  D(-(x, y)) -> -(D(x), D(y))
                                                , D(t()) -> 1()
                                                , D(constant()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                           
                                           Certificate: MAYBE
                                           
                                           Application of 'removetails >>> ... >>> ... >>> ...':
                                           -----------------------------------------------------
                                             The processor is inapplicable since the strict
                                             component of the input problem is not empty
                                             
                                             We abort the transformation and continue with the subprocessor on the problem
                                             
                                             Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                             Strict Trs:
                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                             Weak DPs:
                                               {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                             Weak Trs:
                                               {  D(-(x, y)) -> -(D(x), D(y))
                                                , D(t()) -> 1()
                                                , D(constant()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                             
                                             1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                
                                                  The weightgap principle does not apply
                                                
                                                We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                
                                                Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                                Strict Trs:
                                                  {  D(+(x, y)) -> +(D(x), D(y))
                                                   , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                Weak DPs:
                                                  {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                   , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                Weak Trs:
                                                  {  D(-(x, y)) -> -(D(x), D(y))
                                                   , D(t()) -> 1()
                                                   , D(constant()) -> 0()}
                                                StartTerms: basic terms
                                                Strategy: none
                                                
                                                  The weightgap principle applies, where following rules are oriented strictly:
                                                  
                                                  Dependency Pairs:
                                                    {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                                  
                                                  Interpretation:
                                                  ---------------
                                                    The following argument positions are usable:
                                                      Uargs(D) = {}, Uargs(+) = {1, 2},
                                                      Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                      Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                      Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                                    We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                    Interpretation Functions:
                                                     D(x1) = [0 0 0] x1 + [0]
                                                             [0 0 1]      [0]
                                                             [0 1 0]      [0]
                                                     t() = [0]
                                                           [0]
                                                           [0]
                                                     1() = [0]
                                                           [0]
                                                           [0]
                                                     constant() = [0]
                                                                  [0]
                                                                  [0]
                                                     0() = [0]
                                                           [0]
                                                           [0]
                                                     +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                 [0 0 0]      [0 1 0]      [0]
                                                                 [0 0 1]      [0 0 1]      [2]
                                                     *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                 [0 0 0]      [0 0 1]      [0]
                                                                 [0 0 1]      [0 0 1]      [0]
                                                     -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                 [0 1 0]      [0 1 0]      [2]
                                                                 [0 0 1]      [0 0 1]      [2]
                                                     D^#(x1) = [0 0 2] x1 + [0]
                                                               [0 0 0]      [0]
                                                               [0 0 0]      [0]
                                                     c_1() = [0]
                                                             [0]
                                                             [0]
                                                     c_2() = [0]
                                                             [0]
                                                             [0]
                                                     c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                   [0 1 0]      [0 1 0]      [0]
                                                                   [0 0 1]      [0 0 1]      [0]
                                                     c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                           [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                           [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                     c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                   [0 1 0]      [0 1 0]      [0]
                                                                   [0 0 1]      [0 0 1]      [0]
                                                  
                                                  The strictly oriented rules are moved into the weak component.
                                                
                                                We consider the following Problem:
                                                
                                                  Strict Trs:
                                                    {  D(+(x, y)) -> +(D(x), D(y))
                                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                  Weak DPs:
                                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                  Weak Trs:
                                                    {  D(-(x, y)) -> -(D(x), D(y))
                                                     , D(t()) -> 1()
                                                     , D(constant()) -> 0()}
                                                  StartTerms: basic terms
                                                  Strategy: none
                                                
                                                Certificate: MAYBE
                                                
                                                Application of 'removetails >>> ... >>> ... >>> ...':
                                                -----------------------------------------------------
                                                  The processor is inapplicable since the strict
                                                  component of the input problem is not empty
                                                  
                                                  We abort the transformation and continue with the subprocessor on the problem
                                                  
                                                  Strict Trs:
                                                    {  D(+(x, y)) -> +(D(x), D(y))
                                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                  Weak DPs:
                                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                  Weak Trs:
                                                    {  D(-(x, y)) -> -(D(x), D(y))
                                                     , D(t()) -> 1()
                                                     , D(constant()) -> 0()}
                                                  StartTerms: basic terms
                                                  Strategy: none
                                                  
                                                  1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                     
                                                       The weightgap principle does not apply
                                                     
                                                     We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                     
                                                     Strict Trs:
                                                       {  D(+(x, y)) -> +(D(x), D(y))
                                                        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                     Weak DPs:
                                                       {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                        , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                     Weak Trs:
                                                       {  D(-(x, y)) -> -(D(x), D(y))
                                                        , D(t()) -> 1()
                                                        , D(constant()) -> 0()}
                                                     StartTerms: basic terms
                                                     Strategy: none
                                                     
                                                       The weightgap principle applies, where following rules are oriented strictly:
                                                       
                                                       TRS Component: {D(+(x, y)) -> +(D(x), D(y))}
                                                       
                                                       Interpretation:
                                                       ---------------
                                                         The following argument positions are usable:
                                                           Uargs(D) = {}, Uargs(+) = {1, 2},
                                                           Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                           Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                           Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                                         We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                         Interpretation Functions:
                                                          D(x1) = [0 0 1] x1 + [0]
                                                                  [1 0 1]      [0]
                                                                  [0 1 0]      [0]
                                                          t() = [0]
                                                                [0]
                                                                [0]
                                                          1() = [0]
                                                                [0]
                                                                [0]
                                                          constant() = [0]
                                                                       [0]
                                                                       [0]
                                                          0() = [0]
                                                                [0]
                                                                [0]
                                                          +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                      [0 1 0]      [0 1 0]      [1]
                                                                      [0 0 1]      [0 0 1]      [1]
                                                          *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                      [0 1 0]      [0 1 0]      [1]
                                                                      [0 0 1]      [0 0 1]      [0]
                                                          -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                                      [0 1 0]      [0 1 0]      [2]
                                                                      [0 0 1]      [0 0 1]      [1]
                                                          D^#(x1) = [0 0 0] x1 + [0]
                                                                    [0 0 0]      [0]
                                                                    [0 1 1]      [1]
                                                          c_1() = [0]
                                                                  [0]
                                                                  [0]
                                                          c_2() = [0]
                                                                  [0]
                                                                  [0]
                                                          c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                        [0 1 0]      [0 1 0]      [0]
                                                                        [0 0 1]      [0 0 1]      [1]
                                                          c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                                [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                                [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                          c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                        [0 1 0]      [0 1 0]      [0]
                                                                        [0 0 1]      [0 0 1]      [1]
                                                       
                                                       The strictly oriented rules are moved into the weak component.
                                                     
                                                     We consider the following Problem:
                                                     
                                                       Strict Trs:
                                                         {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                       Weak DPs:
                                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                          , D^#(*(x, y)) ->
                                                            c_4(y, D^#(x), x, D^#(y))
                                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                       Weak Trs:
                                                         {  D(+(x, y)) -> +(D(x), D(y))
                                                          , D(-(x, y)) -> -(D(x), D(y))
                                                          , D(t()) -> 1()
                                                          , D(constant()) -> 0()}
                                                       StartTerms: basic terms
                                                       Strategy: none
                                                     
                                                     Certificate: MAYBE
                                                     
                                                     Application of 'removetails >>> ... >>> ... >>> ...':
                                                     -----------------------------------------------------
                                                       The processor is inapplicable since the
                                                       strict component of the input problem is not
                                                       empty
                                                       
                                                       We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                                       Sub-problem 1:
                                                       --------------
                                                         We consider the problem
                                                         
                                                         Strict Trs:
                                                           {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                         Weak DPs:
                                                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                            , D^#(*(x, y)) ->
                                                              c_4(y, D^#(x), x, D^#(y))
                                                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                         Weak Trs:
                                                           {  D(+(x, y)) -> +(D(x), D(y))
                                                            , D(-(x, y)) -> -(D(x), D(y))
                                                            , D(t()) -> 1()
                                                            , D(constant()) -> 0()}
                                                         StartTerms: basic terms
                                                         Strategy: none
                                                         
                                                         We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                         
                                                           The weightgap principle does not apply
                                                         
                                                         We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                         
                                                         Strict Trs:
                                                           {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                         Weak DPs:
                                                           {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                            , D^#(*(x, y)) ->
                                                              c_4(y, D^#(x), x, D^#(y))
                                                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                         Weak Trs:
                                                           {  D(+(x, y)) -> +(D(x), D(y))
                                                            , D(-(x, y)) -> -(D(x), D(y))
                                                            , D(t()) -> 1()
                                                            , D(constant()) -> 0()}
                                                         StartTerms: basic terms
                                                         Strategy: none
                                                         
                                                           We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                           
                                                             The weightgap principle does not apply
                                                           
                                                           We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                           
                                                           Strict Trs:
                                                             {D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                           Weak DPs:
                                                             {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                              , D^#(*(x, y)) ->
                                                                c_4(y, D^#(x), x, D^#(y))
                                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                           Weak Trs:
                                                             {  D(+(x, y)) -> +(D(x), D(y))
                                                              , D(-(x, y)) -> -(D(x), D(y))
                                                              , D(t()) -> 1()
                                                              , D(constant()) -> 0()}
                                                           StartTerms: basic terms
                                                           Strategy: none
                                                           
                                                             The weightgap principle does not apply
                                                       
                                                       We abort the transformation and continue with the subprocessor on the problem
                                                       
                                                       Strict Trs:
                                                         {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                       Weak DPs:
                                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                          , D^#(*(x, y)) ->
                                                            c_4(y, D^#(x), x, D^#(y))
                                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                       Weak Trs:
                                                         {  D(+(x, y)) -> +(D(x), D(y))
                                                          , D(-(x, y)) -> -(D(x), D(y))
                                                          , D(t()) -> 1()
                                                          , D(constant()) -> 0()}
                                                       StartTerms: basic terms
                                                       Strategy: none
                                                       
                                                       1) None of the processors succeeded.
                                                          
                                                          Details of failed attempt(s):
                                                          -----------------------------
                                                            1) 'Sequentially' failed due to the following reason:
                                                                 None of the processors succeeded.
                                                                 
                                                                 Details of failed attempt(s):
                                                                 -----------------------------
                                                                   1) 'empty' failed due to the following reason:
                                                                        Empty strict component of the problem is NOT empty.
                                                                   
                                                                   2) 'Fastest' failed due to the following reason:
                                                                        None of the processors succeeded.
                                                                        
                                                                        Details of failed attempt(s):
                                                                        -----------------------------
                                                                          1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                               The input cannot be shown compatible
                                                                          
                                                                          2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                               The input cannot be shown compatible
                                                                          
                                                                          3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                               The input cannot be shown compatible
                                                                          
                                                                   
                                                            
                                                            2) 'compose (statically using 'split first congruence from CWD', multiplication)' failed due to the following reason:
                                                                 Compose is inapplicable since some weak rule is size increasing
                                                                 
                                                                 No subproblems were generated.
                                                            
                                                       
                                                  
                                             
                                        
                                   
                              
                         
                     
                     * Path {3,5,4}->{1}: ?
                       --------------------
                       
                       CANNOT find proof of path {3,5,4}->{1}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {3,5,4}->{2}: ?
                       --------------------
                       
                       CANNOT find proof of path {3,5,4}->{2}. Propably computation has been aborted since some other path cannot be solved.
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
MAYBE
InputDer95 08

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: MAYBE

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  D^#(t()) -> c_1()
               , D^#(constant()) -> c_2()
               , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  D^#(t()) -> c_1()
                 , D^#(constant()) -> c_2()
                 , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                 , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
              Strict Trs:
                {  D(t()) -> 1()
                 , D(constant()) -> 0()
                 , D(+(x, y)) -> +(D(x), D(y))
                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                 , D(-(x, y)) -> -(D(x), D(y))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'compose (statically using 'split all congruence from CWD except leafs', multiplication)' failed due to the following reason:
                     Compose is inapplicable since some strict rule is size increasing
                     
                     We abort the transformation and continue with the subprocessor on the problem
                     
                     Strict DPs:
                       {  D^#(t()) -> c_1()
                        , D^#(constant()) -> c_2()
                        , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                        , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                     Strict Trs:
                       {  D(t()) -> 1()
                        , D(constant()) -> 0()
                        , D(+(x, y)) -> +(D(x), D(y))
                        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                        , D(-(x, y)) -> -(D(x), D(y))}
                     StartTerms: basic terms
                     Strategy: innermost
                     
                     1) The processor is inapplicable since the strict component of the
                        input problem is not empty
                        
                        We abort the transformation and continue with the subprocessor on the problem
                        
                        Strict DPs:
                          {  D^#(t()) -> c_1()
                           , D^#(constant()) -> c_2()
                           , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                           , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                        Strict Trs:
                          {  D(t()) -> 1()
                           , D(constant()) -> 0()
                           , D(+(x, y)) -> +(D(x), D(y))
                           , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                           , D(-(x, y)) -> -(D(x), D(y))}
                        StartTerms: basic terms
                        Strategy: innermost
                        
                        1) The weightgap principle applies, where following rules are oriented strictly:
                           
                           Dependency Pairs:
                             {  D^#(t()) -> c_1()
                              , D^#(constant()) -> c_2()}
                           
                           Interpretation:
                           ---------------
                             The following argument positions are usable:
                               Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                               Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                               Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}
                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                             Interpretation Functions:
                              D(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                              t() = [0]
                                    [0]
                              1() = [3]
                                    [0]
                              constant() = [0]
                                           [0]
                              0() = [3]
                                    [0]
                              +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                              *(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                              -(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                              D^#(x1) = [0 0] x1 + [3]
                                        [0 0]      [0]
                              c_1() = [0]
                                      [0]
                              c_2() = [0]
                                      [0]
                              c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                            [0 1]      [0 1]      [3]
                              c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                            [0 1]      [0 1]      [2]
                              c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                            [0 1]      [0 1]      [2]
                           
                           The strictly oriented rules are moved into the weak component.
                           
                           We consider the following Problem:
                           
                             Strict DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                             Strict Trs:
                               {  D(t()) -> 1()
                                , D(constant()) -> 0()
                                , D(+(x, y)) -> +(D(x), D(y))
                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                , D(-(x, y)) -> -(D(x), D(y))}
                             Weak DPs:
                               {  D^#(t()) -> c_1()
                                , D^#(constant()) -> c_2()}
                             StartTerms: basic terms
                             Strategy: innermost
                           
                           Certificate: MAYBE
                           
                           Application of 'removetails >>> ... >>> ... >>> ...':
                           -----------------------------------------------------
                             The processor is inapplicable since the strict component of the
                             input problem is not empty
                             
                             We abort the transformation and continue with the subprocessor on the problem
                             
                             Strict DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                             Strict Trs:
                               {  D(t()) -> 1()
                                , D(constant()) -> 0()
                                , D(+(x, y)) -> +(D(x), D(y))
                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                , D(-(x, y)) -> -(D(x), D(y))}
                             Weak DPs:
                               {  D^#(t()) -> c_1()
                                , D^#(constant()) -> c_2()}
                             StartTerms: basic terms
                             Strategy: innermost
                             
                             1) The weightgap principle applies, where following rules are oriented strictly:
                                
                                TRS Component:
                                  {  D(t()) -> 1()
                                   , D(constant()) -> 0()}
                                
                                Interpretation:
                                ---------------
                                  The following argument positions are usable:
                                    Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                    Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                    Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}
                                  We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                  Interpretation Functions:
                                   D(x1) = [0 0] x1 + [2]
                                           [0 0]      [0]
                                   t() = [0]
                                         [0]
                                   1() = [1]
                                         [0]
                                   constant() = [0]
                                                [0]
                                   0() = [1]
                                         [0]
                                   +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                               [0 0]      [0 0]      [0]
                                   *(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                               [0 0]      [0 0]      [0]
                                   -(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                               [0 0]      [0 0]      [0]
                                   D^#(x1) = [0 0] x1 + [0]
                                             [0 0]      [0]
                                   c_1() = [0]
                                           [0]
                                   c_2() = [0]
                                           [0]
                                   c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [3]
                                   c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [3]
                                   c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [2]
                                
                                The strictly oriented rules are moved into the weak component.
                                
                                We consider the following Problem:
                                
                                  Strict DPs:
                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                     , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                  Strict Trs:
                                    {  D(+(x, y)) -> +(D(x), D(y))
                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                     , D(-(x, y)) -> -(D(x), D(y))}
                                  Weak DPs:
                                    {  D^#(t()) -> c_1()
                                     , D^#(constant()) -> c_2()}
                                  Weak Trs:
                                    {  D(t()) -> 1()
                                     , D(constant()) -> 0()}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: MAYBE
                                
                                Application of 'removetails >>> ... >>> ... >>> ...':
                                -----------------------------------------------------
                                  The processor is inapplicable since the strict component of the
                                  input problem is not empty
                                  
                                  We abort the transformation and continue with the subprocessor on the problem
                                  
                                  Strict DPs:
                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                     , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                  Strict Trs:
                                    {  D(+(x, y)) -> +(D(x), D(y))
                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                     , D(-(x, y)) -> -(D(x), D(y))}
                                  Weak DPs:
                                    {  D^#(t()) -> c_1()
                                     , D^#(constant()) -> c_2()}
                                  Weak Trs:
                                    {  D(t()) -> 1()
                                     , D(constant()) -> 0()}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                  
                                  1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                     
                                       The weightgap principle does not apply
                                     
                                     We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                     
                                     Strict DPs:
                                       {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                        , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                     Strict Trs:
                                       {  D(+(x, y)) -> +(D(x), D(y))
                                        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                        , D(-(x, y)) -> -(D(x), D(y))}
                                     Weak DPs:
                                       {  D^#(t()) -> c_1()
                                        , D^#(constant()) -> c_2()}
                                     Weak Trs:
                                       {  D(t()) -> 1()
                                        , D(constant()) -> 0()}
                                     StartTerms: basic terms
                                     Strategy: innermost
                                     
                                       The weightgap principle applies, where following rules are oriented strictly:
                                       
                                       TRS Component: {D(-(x, y)) -> -(D(x), D(y))}
                                       
                                       Interpretation:
                                       ---------------
                                         The following argument positions are usable:
                                           Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                           Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                           Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}
                                         We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                         Interpretation Functions:
                                          D(x1) = [0 2 0] x1 + [0]
                                                  [0 1 1]      [0]
                                                  [0 0 0]      [0]
                                          t() = [0]
                                                [0]
                                                [0]
                                          1() = [0]
                                                [0]
                                                [0]
                                          constant() = [0]
                                                       [0]
                                                       [0]
                                          0() = [0]
                                                [0]
                                                [0]
                                          +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                      [0 1 0]      [0 1 0]      [0]
                                                      [0 0 0]      [0 0 0]      [0]
                                          *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                      [0 1 0]      [0 1 0]      [0]
                                                      [0 0 0]      [0 0 0]      [0]
                                          -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                      [0 1 0]      [0 1 0]      [1]
                                                      [0 0 1]      [0 0 1]      [0]
                                          D^#(x1) = [0 0 0] x1 + [0]
                                                    [0 0 0]      [0]
                                                    [0 0 0]      [0]
                                          c_1() = [0]
                                                  [0]
                                                  [0]
                                          c_2() = [0]
                                                  [0]
                                                  [0]
                                          c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                        [0 1 0]      [0 1 0]      [3]
                                                        [0 0 1]      [0 0 1]      [3]
                                          c_4(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                        [0 1 0]      [0 1 0]      [3]
                                                        [0 0 1]      [0 0 1]      [3]
                                          c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                        [0 1 0]      [0 1 0]      [2]
                                                        [0 0 1]      [0 0 1]      [3]
                                       
                                       The strictly oriented rules are moved into the weak component.
                                     
                                     We consider the following Problem:
                                     
                                       Strict DPs:
                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                       Strict Trs:
                                         {  D(+(x, y)) -> +(D(x), D(y))
                                          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                       Weak DPs:
                                         {  D^#(t()) -> c_1()
                                          , D^#(constant()) -> c_2()}
                                       Weak Trs:
                                         {  D(-(x, y)) -> -(D(x), D(y))
                                          , D(t()) -> 1()
                                          , D(constant()) -> 0()}
                                       StartTerms: basic terms
                                       Strategy: innermost
                                     
                                     Certificate: MAYBE
                                     
                                     Application of 'removetails >>> ... >>> ... >>> ...':
                                     -----------------------------------------------------
                                       The processor is inapplicable since the strict component of
                                       the input problem is not empty
                                       
                                       We abort the transformation and continue with the subprocessor on the problem
                                       
                                       Strict DPs:
                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                       Strict Trs:
                                         {  D(+(x, y)) -> +(D(x), D(y))
                                          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                       Weak DPs:
                                         {  D^#(t()) -> c_1()
                                          , D^#(constant()) -> c_2()}
                                       Weak Trs:
                                         {  D(-(x, y)) -> -(D(x), D(y))
                                          , D(t()) -> 1()
                                          , D(constant()) -> 0()}
                                       StartTerms: basic terms
                                       Strategy: innermost
                                       
                                       1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                          
                                            The weightgap principle does not apply
                                          
                                          We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                          
                                          Strict DPs:
                                            {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                             , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                             , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                          Strict Trs:
                                            {  D(+(x, y)) -> +(D(x), D(y))
                                             , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                          Weak DPs:
                                            {  D^#(t()) -> c_1()
                                             , D^#(constant()) -> c_2()}
                                          Weak Trs:
                                            {  D(-(x, y)) -> -(D(x), D(y))
                                             , D(t()) -> 1()
                                             , D(constant()) -> 0()}
                                          StartTerms: basic terms
                                          Strategy: innermost
                                          
                                            The weightgap principle applies, where following rules are oriented strictly:
                                            
                                            Dependency Pairs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                            
                                            Interpretation:
                                            ---------------
                                              The following argument positions are usable:
                                                Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                                Uargs(-) = {1, 2}, Uargs(D^#) = {},
                                                Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
                                                Uargs(c_5) = {1, 2}
                                              We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                              Interpretation Functions:
                                               D(x1) = [0 0 0] x1 + [0]
                                                       [0 0 0]      [0]
                                                       [0 0 0]      [0]
                                               t() = [0]
                                                     [0]
                                                     [0]
                                               1() = [0]
                                                     [0]
                                                     [0]
                                               constant() = [0]
                                                            [0]
                                                            [0]
                                               0() = [0]
                                                     [0]
                                                     [0]
                                               +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                           [0 0 0]      [0 1 2]      [0]
                                                           [0 0 1]      [0 0 1]      [2]
                                               *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                           [0 0 3]      [0 0 0]      [0]
                                                           [0 0 1]      [0 0 1]      [0]
                                               -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                           [0 0 0]      [0 0 0]      [0]
                                                           [0 0 1]      [0 0 1]      [0]
                                               D^#(x1) = [0 0 2] x1 + [0]
                                                         [0 0 0]      [0]
                                                         [0 0 0]      [0]
                                               c_1() = [0]
                                                       [0]
                                                       [0]
                                               c_2() = [0]
                                                       [0]
                                                       [0]
                                               c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                             [0 1 0]      [0 1 0]      [0]
                                                             [0 0 1]      [0 0 1]      [0]
                                               c_4(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                             [0 1 0]      [0 1 0]      [3]
                                                             [0 0 1]      [0 0 1]      [2]
                                               c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                             [0 1 0]      [0 1 0]      [3]
                                                             [0 0 1]      [0 0 1]      [2]
                                            
                                            The strictly oriented rules are moved into the weak component.
                                          
                                          We consider the following Problem:
                                          
                                            Strict DPs:
                                              {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                            Strict Trs:
                                              {  D(+(x, y)) -> +(D(x), D(y))
                                               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                            Weak DPs:
                                              {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                               , D^#(t()) -> c_1()
                                               , D^#(constant()) -> c_2()}
                                            Weak Trs:
                                              {  D(-(x, y)) -> -(D(x), D(y))
                                               , D(t()) -> 1()
                                               , D(constant()) -> 0()}
                                            StartTerms: basic terms
                                            Strategy: innermost
                                          
                                          Certificate: MAYBE
                                          
                                          Application of 'removetails >>> ... >>> ... >>> ...':
                                          -----------------------------------------------------
                                            The processor is inapplicable since the strict component
                                            of the input problem is not empty
                                            
                                            We abort the transformation and continue with the subprocessor on the problem
                                            
                                            Strict DPs:
                                              {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                            Strict Trs:
                                              {  D(+(x, y)) -> +(D(x), D(y))
                                               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                            Weak DPs:
                                              {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                               , D^#(t()) -> c_1()
                                               , D^#(constant()) -> c_2()}
                                            Weak Trs:
                                              {  D(-(x, y)) -> -(D(x), D(y))
                                               , D(t()) -> 1()
                                               , D(constant()) -> 0()}
                                            StartTerms: basic terms
                                            Strategy: innermost
                                            
                                            1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                               
                                                 The weightgap principle does not apply
                                               
                                               We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                               
                                               Strict DPs:
                                                 {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                                  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                               Strict Trs:
                                                 {  D(+(x, y)) -> +(D(x), D(y))
                                                  , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                               Weak DPs:
                                                 {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                  , D^#(t()) -> c_1()
                                                  , D^#(constant()) -> c_2()}
                                               Weak Trs:
                                                 {  D(-(x, y)) -> -(D(x), D(y))
                                                  , D(t()) -> 1()
                                                  , D(constant()) -> 0()}
                                               StartTerms: basic terms
                                               Strategy: innermost
                                               
                                                 The weightgap principle applies, where following rules are oriented strictly:
                                                 
                                                 Dependency Pairs:
                                                   {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                                 
                                                 Interpretation:
                                                 ---------------
                                                   The following argument positions are usable:
                                                     Uargs(D) = {}, Uargs(+) = {1, 2},
                                                     Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                     Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                     Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}
                                                   We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                   Interpretation Functions:
                                                    D(x1) = [0 0 0] x1 + [0]
                                                            [0 1 1]      [0]
                                                            [0 2 0]      [0]
                                                    t() = [0]
                                                          [0]
                                                          [0]
                                                    1() = [0]
                                                          [0]
                                                          [0]
                                                    constant() = [0]
                                                                 [0]
                                                                 [0]
                                                    0() = [0]
                                                          [0]
                                                          [0]
                                                    +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                [0 1 0]      [0 0 2]      [0]
                                                                [0 0 1]      [0 0 1]      [0]
                                                    *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                [0 0 0]      [0 1 0]      [0]
                                                                [0 0 1]      [0 0 1]      [0]
                                                    -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                [0 1 0]      [0 1 0]      [2]
                                                                [0 0 1]      [0 0 1]      [1]
                                                    D^#(x1) = [0 0 1] x1 + [0]
                                                              [0 0 0]      [0]
                                                              [0 0 0]      [0]
                                                    c_1() = [0]
                                                            [0]
                                                            [0]
                                                    c_2() = [0]
                                                            [0]
                                                            [0]
                                                    c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                  [0 1 0]      [0 1 0]      [0]
                                                                  [0 0 1]      [0 0 1]      [0]
                                                    c_4(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                  [0 1 0]      [0 1 0]      [3]
                                                                  [0 0 1]      [0 0 1]      [3]
                                                    c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                  [0 1 0]      [0 1 0]      [0]
                                                                  [0 0 1]      [0 0 1]      [0]
                                                 
                                                 The strictly oriented rules are moved into the weak component.
                                               
                                               We consider the following Problem:
                                               
                                                 Strict DPs: {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                 Strict Trs:
                                                   {  D(+(x, y)) -> +(D(x), D(y))
                                                    , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                 Weak DPs:
                                                   {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                    , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                    , D^#(t()) -> c_1()
                                                    , D^#(constant()) -> c_2()}
                                                 Weak Trs:
                                                   {  D(-(x, y)) -> -(D(x), D(y))
                                                    , D(t()) -> 1()
                                                    , D(constant()) -> 0()}
                                                 StartTerms: basic terms
                                                 Strategy: innermost
                                               
                                               Certificate: MAYBE
                                               
                                               Application of 'removetails >>> ... >>> ... >>> ...':
                                               -----------------------------------------------------
                                                 The processor is inapplicable since the strict
                                                 component of the input problem is not empty
                                                 
                                                 We abort the transformation and continue with the subprocessor on the problem
                                                 
                                                 Strict DPs: {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                 Strict Trs:
                                                   {  D(+(x, y)) -> +(D(x), D(y))
                                                    , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                 Weak DPs:
                                                   {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                    , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                    , D^#(t()) -> c_1()
                                                    , D^#(constant()) -> c_2()}
                                                 Weak Trs:
                                                   {  D(-(x, y)) -> -(D(x), D(y))
                                                    , D(t()) -> 1()
                                                    , D(constant()) -> 0()}
                                                 StartTerms: basic terms
                                                 Strategy: innermost
                                                 
                                                 1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                    
                                                      The weightgap principle does not apply
                                                    
                                                    We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                    
                                                    Strict DPs:
                                                      {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                    Strict Trs:
                                                      {  D(+(x, y)) -> +(D(x), D(y))
                                                       , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                    Weak DPs:
                                                      {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                       , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                       , D^#(t()) -> c_1()
                                                       , D^#(constant()) -> c_2()}
                                                    Weak Trs:
                                                      {  D(-(x, y)) -> -(D(x), D(y))
                                                       , D(t()) -> 1()
                                                       , D(constant()) -> 0()}
                                                    StartTerms: basic terms
                                                    Strategy: innermost
                                                    
                                                      The weightgap principle applies, where following rules are oriented strictly:
                                                      
                                                      TRS Component: {D(+(x, y)) -> +(D(x), D(y))}
                                                      
                                                      Interpretation:
                                                      ---------------
                                                        The following argument positions are usable:
                                                          Uargs(D) = {}, Uargs(+) = {1, 2},
                                                          Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                          Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                          Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}
                                                        We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                        Interpretation Functions:
                                                         D(x1) = [0 2 0] x1 + [0]
                                                                 [3 0 1]      [0]
                                                                 [0 0 0]      [0]
                                                         t() = [0]
                                                               [0]
                                                               [0]
                                                         1() = [0]
                                                               [0]
                                                               [0]
                                                         constant() = [0]
                                                                      [0]
                                                                      [0]
                                                         0() = [0]
                                                               [0]
                                                               [0]
                                                         +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                     [0 1 2]      [0 1 3]      [2]
                                                                     [0 0 1]      [0 0 1]      [0]
                                                         *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                     [0 1 0]      [0 1 0]      [0]
                                                                     [0 0 1]      [0 0 0]      [0]
                                                         -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                     [0 1 0]      [0 1 0]      [0]
                                                                     [0 0 1]      [0 0 1]      [0]
                                                         D^#(x1) = [0 0 0] x1 + [0]
                                                                   [0 0 0]      [0]
                                                                   [0 0 0]      [0]
                                                         c_1() = [0]
                                                                 [0]
                                                                 [0]
                                                         c_2() = [0]
                                                                 [0]
                                                                 [0]
                                                         c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                       [0 1 0]      [0 1 0]      [0]
                                                                       [0 0 1]      [0 0 1]      [0]
                                                         c_4(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                       [0 1 0]      [0 1 0]      [3]
                                                                       [0 0 1]      [0 0 1]      [3]
                                                         c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                       [0 1 0]      [0 1 0]      [0]
                                                                       [0 0 1]      [0 0 1]      [0]
                                                      
                                                      The strictly oriented rules are moved into the weak component.
                                                    
                                                    We consider the following Problem:
                                                    
                                                      Strict DPs:
                                                        {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                      Strict Trs:
                                                        {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                      Weak DPs:
                                                        {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                         , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                         , D^#(t()) -> c_1()
                                                         , D^#(constant()) -> c_2()}
                                                      Weak Trs:
                                                        {  D(+(x, y)) -> +(D(x), D(y))
                                                         , D(-(x, y)) -> -(D(x), D(y))
                                                         , D(t()) -> 1()
                                                         , D(constant()) -> 0()}
                                                      StartTerms: basic terms
                                                      Strategy: innermost
                                                    
                                                    Certificate: MAYBE
                                                    
                                                    Application of 'removetails >>> ... >>> ... >>> ...':
                                                    -----------------------------------------------------
                                                      The processor is inapplicable since the strict
                                                      component of the input problem is not empty
                                                      
                                                      We abort the transformation and continue with the subprocessor on the problem
                                                      
                                                      Strict DPs:
                                                        {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                      Strict Trs:
                                                        {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                      Weak DPs:
                                                        {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                         , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                         , D^#(t()) -> c_1()
                                                         , D^#(constant()) -> c_2()}
                                                      Weak Trs:
                                                        {  D(+(x, y)) -> +(D(x), D(y))
                                                         , D(-(x, y)) -> -(D(x), D(y))
                                                         , D(t()) -> 1()
                                                         , D(constant()) -> 0()}
                                                      StartTerms: basic terms
                                                      Strategy: innermost
                                                      
                                                      1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                         
                                                           The weightgap principle does not apply
                                                         
                                                         We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                         
                                                         Strict DPs:
                                                           {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                         Strict Trs:
                                                           {D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                         Weak DPs:
                                                           {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                            , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                            , D^#(t()) -> c_1()
                                                            , D^#(constant()) -> c_2()}
                                                         Weak Trs:
                                                           {  D(+(x, y)) -> +(D(x), D(y))
                                                            , D(-(x, y)) -> -(D(x), D(y))
                                                            , D(t()) -> 1()
                                                            , D(constant()) -> 0()}
                                                         StartTerms: basic terms
                                                         Strategy: innermost
                                                         
                                                           The weightgap principle applies, where following rules are oriented strictly:
                                                           
                                                           Dependency Pairs:
                                                             {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                           
                                                           Interpretation:
                                                           ---------------
                                                             The following argument positions are usable:
                                                               Uargs(D) = {}, Uargs(+) = {1, 2},
                                                               Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                               Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                               Uargs(c_4) = {1, 2},
                                                               Uargs(c_5) = {1, 2}
                                                             We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                             Interpretation Functions:
                                                              D(x1) = [0 0 0] x1 + [0]
                                                                      [0 0 0]      [0]
                                                                      [0 0 2]      [0]
                                                              t() = [0]
                                                                    [0]
                                                                    [0]
                                                              1() = [0]
                                                                    [0]
                                                                    [0]
                                                              constant() = [0]
                                                                           [0]
                                                                           [0]
                                                              0() = [0]
                                                                    [0]
                                                                    [0]
                                                              +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                          [0 1 0]      [0 1 0]      [0]
                                                                          [0 0 0]      [0 0 0]      [0]
                                                              *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                          [0 1 0]      [0 1 0]      [3]
                                                                          [0 0 0]      [0 0 0]      [0]
                                                              -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                          [0 1 0]      [0 1 0]      [0]
                                                                          [0 0 0]      [0 0 0]      [2]
                                                              D^#(x1) = [0 3 0] x1 + [0]
                                                                        [0 0 0]      [0]
                                                                        [0 3 0]      [0]
                                                              c_1() = [0]
                                                                      [0]
                                                                      [0]
                                                              c_2() = [0]
                                                                      [0]
                                                                      [0]
                                                              c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                            [0 1 0]      [0 1 0]      [0]
                                                                            [0 0 1]      [0 0 1]      [0]
                                                              c_4(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                            [0 1 0]      [0 1 0]      [0]
                                                                            [0 0 1]      [0 0 1]      [3]
                                                              c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                            [0 1 0]      [0 1 0]      [0]
                                                                            [0 0 1]      [0 0 1]      [0]
                                                           
                                                           The strictly oriented rules are moved into the weak component.
                                                         
                                                         We consider the following Problem:
                                                         
                                                           Strict Trs:
                                                             {D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                           Weak DPs:
                                                             {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                              , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                              , D^#(t()) -> c_1()
                                                              , D^#(constant()) -> c_2()}
                                                           Weak Trs:
                                                             {  D(+(x, y)) -> +(D(x), D(y))
                                                              , D(-(x, y)) -> -(D(x), D(y))
                                                              , D(t()) -> 1()
                                                              , D(constant()) -> 0()}
                                                           StartTerms: basic terms
                                                           Strategy: innermost
                                                         
                                                         Certificate: MAYBE
                                                         
                                                         Application of 'removetails >>> ... >>> ... >>> ...':
                                                         -----------------------------------------------------
                                                           The processor is inapplicable since the
                                                           strict component of the input problem is
                                                           not empty
                                                           
                                                           We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                                           Sub-problem 1:
                                                           --------------
                                                             We consider the problem
                                                             
                                                             Strict Trs:
                                                               {D(*(x, y)) ->
                                                                +(*(y, D(x)), *(x, D(y)))}
                                                             Weak DPs:
                                                               {  D^#(*(x, y)) ->
                                                                  c_4(D^#(x), D^#(y))
                                                                , D^#(-(x, y)) ->
                                                                  c_5(D^#(x), D^#(y))
                                                                , D^#(+(x, y)) ->
                                                                  c_3(D^#(x), D^#(y))
                                                                , D^#(t()) -> c_1()
                                                                , D^#(constant()) -> c_2()}
                                                             Weak Trs:
                                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                                , D(-(x, y)) -> -(D(x), D(y))
                                                                , D(t()) -> 1()
                                                                , D(constant()) -> 0()}
                                                             StartTerms: basic terms
                                                             Strategy: innermost
                                                             
                                                             We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                             
                                                               The weightgap principle does not apply
                                                             
                                                             We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                             
                                                             Strict Trs:
                                                               {D(*(x, y)) ->
                                                                +(*(y, D(x)), *(x, D(y)))}
                                                             Weak DPs:
                                                               {  D^#(*(x, y)) ->
                                                                  c_4(D^#(x), D^#(y))
                                                                , D^#(-(x, y)) ->
                                                                  c_5(D^#(x), D^#(y))
                                                                , D^#(+(x, y)) ->
                                                                  c_3(D^#(x), D^#(y))
                                                                , D^#(t()) -> c_1()
                                                                , D^#(constant()) -> c_2()}
                                                             Weak Trs:
                                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                                , D(-(x, y)) -> -(D(x), D(y))
                                                                , D(t()) -> 1()
                                                                , D(constant()) -> 0()}
                                                             StartTerms: basic terms
                                                             Strategy: innermost
                                                             
                                                               We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                               
                                                                 The weightgap principle does not apply
                                                               
                                                               We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                               
                                                               Strict Trs:
                                                                 {D(*(x, y)) ->
                                                                  +(*(y, D(x)), *(x, D(y)))}
                                                               Weak DPs:
                                                                 {  D^#(*(x, y)) ->
                                                                    c_4(D^#(x), D^#(y))
                                                                  , D^#(-(x, y)) ->
                                                                    c_5(D^#(x), D^#(y))
                                                                  , D^#(+(x, y)) ->
                                                                    c_3(D^#(x), D^#(y))
                                                                  , D^#(t()) -> c_1()
                                                                  , D^#(constant()) -> c_2()}
                                                               Weak Trs:
                                                                 {  D(+(x, y)) -> +(D(x), D(y))
                                                                  , D(-(x, y)) -> -(D(x), D(y))
                                                                  , D(t()) -> 1()
                                                                  , D(constant()) -> 0()}
                                                               StartTerms: basic terms
                                                               Strategy: innermost
                                                               
                                                                 The weightgap principle does not apply
                                                           
                                                           We abort the transformation and continue with the subprocessor on the problem
                                                           
                                                           Strict Trs:
                                                             {D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                           Weak DPs:
                                                             {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                              , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                              , D^#(t()) -> c_1()
                                                              , D^#(constant()) -> c_2()}
                                                           Weak Trs:
                                                             {  D(+(x, y)) -> +(D(x), D(y))
                                                              , D(-(x, y)) -> -(D(x), D(y))
                                                              , D(t()) -> 1()
                                                              , D(constant()) -> 0()}
                                                           StartTerms: basic terms
                                                           Strategy: innermost
                                                           
                                                           1) None of the processors succeeded.
                                                              
                                                              Details of failed attempt(s):
                                                              -----------------------------
                                                                1) 'empty' failed due to the following reason:
                                                                     Empty strict component of the problem is NOT empty.
                                                                
                                                                2) 'Fastest' failed due to the following reason:
                                                                     None of the processors succeeded.
                                                                     
                                                                     Details of failed attempt(s):
                                                                     -----------------------------
                                                                       1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                            The input cannot be shown compatible
                                                                       
                                                                       2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                            The input cannot be shown compatible
                                                                       
                                                                       3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                            The input cannot be shown compatible
                                                                       
                                                                
                                                           
                                                      
                                                 
                                            
                                       
                                  
                             
                        
                     
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
MAYBE
InputDer95 08

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  D^#(t()) -> c_1()
               , D^#(constant()) -> c_2()
               , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  D^#(t()) -> c_1()
                 , D^#(constant()) -> c_2()
                 , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                 , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                 , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
              Strict Trs:
                {  D(t()) -> 1()
                 , D(constant()) -> 0()
                 , D(+(x, y)) -> +(D(x), D(y))
                 , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                 , D(-(x, y)) -> -(D(x), D(y))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'compose (statically using 'split all congruence from CWD except leafs', multiplication)' failed due to the following reason:
                     Compose is inapplicable since some strict rule is size increasing
                     
                     We abort the transformation and continue with the subprocessor on the problem
                     
                     Strict DPs:
                       {  D^#(t()) -> c_1()
                        , D^#(constant()) -> c_2()
                        , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                        , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                     Strict Trs:
                       {  D(t()) -> 1()
                        , D(constant()) -> 0()
                        , D(+(x, y)) -> +(D(x), D(y))
                        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                        , D(-(x, y)) -> -(D(x), D(y))}
                     StartTerms: basic terms
                     Strategy: none
                     
                     1) The processor is inapplicable since the strict component of the
                        input problem is not empty
                        
                        We abort the transformation and continue with the subprocessor on the problem
                        
                        Strict DPs:
                          {  D^#(t()) -> c_1()
                           , D^#(constant()) -> c_2()
                           , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                           , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                        Strict Trs:
                          {  D(t()) -> 1()
                           , D(constant()) -> 0()
                           , D(+(x, y)) -> +(D(x), D(y))
                           , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                           , D(-(x, y)) -> -(D(x), D(y))}
                        StartTerms: basic terms
                        Strategy: none
                        
                        1) The weightgap principle applies, where following rules are oriented strictly:
                           
                           Dependency Pairs:
                             {  D^#(t()) -> c_1()
                              , D^#(constant()) -> c_2()}
                           
                           Interpretation:
                           ---------------
                             The following argument positions are usable:
                               Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                               Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                               Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                             Interpretation Functions:
                              D(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                              t() = [0]
                                    [0]
                              1() = [3]
                                    [0]
                              constant() = [0]
                                           [0]
                              0() = [3]
                                    [0]
                              +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                              *(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                              -(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                              D^#(x1) = [0 0] x1 + [1]
                                        [0 0]      [0]
                              c_1() = [0]
                                      [0]
                              c_2() = [0]
                                      [0]
                              c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                            [0 1]      [0 1]      [2]
                              c_4(x1, x2, x3, x4) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1 0] x4 + [3]
                                                    [3 0]      [0 1]      [3 3]      [0 1]      [3]
                              c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                            [0 1]      [0 1]      [3]
                           
                           The strictly oriented rules are moved into the weak component.
                           
                           We consider the following Problem:
                           
                             Strict DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                             Strict Trs:
                               {  D(t()) -> 1()
                                , D(constant()) -> 0()
                                , D(+(x, y)) -> +(D(x), D(y))
                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                , D(-(x, y)) -> -(D(x), D(y))}
                             Weak DPs:
                               {  D^#(t()) -> c_1()
                                , D^#(constant()) -> c_2()}
                             StartTerms: basic terms
                             Strategy: none
                           
                           Certificate: MAYBE
                           
                           Application of 'removetails >>> ... >>> ... >>> ...':
                           -----------------------------------------------------
                             The processor is inapplicable since the strict component of the
                             input problem is not empty
                             
                             We abort the transformation and continue with the subprocessor on the problem
                             
                             Strict DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                             Strict Trs:
                               {  D(t()) -> 1()
                                , D(constant()) -> 0()
                                , D(+(x, y)) -> +(D(x), D(y))
                                , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                , D(-(x, y)) -> -(D(x), D(y))}
                             Weak DPs:
                               {  D^#(t()) -> c_1()
                                , D^#(constant()) -> c_2()}
                             StartTerms: basic terms
                             Strategy: none
                             
                             1) The weightgap principle applies, where following rules are oriented strictly:
                                
                                TRS Component:
                                  {  D(t()) -> 1()
                                   , D(constant()) -> 0()}
                                
                                Interpretation:
                                ---------------
                                  The following argument positions are usable:
                                    Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                    Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                    Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                  We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                  Interpretation Functions:
                                   D(x1) = [0 0] x1 + [2]
                                           [0 0]      [1]
                                   t() = [0]
                                         [0]
                                   1() = [1]
                                         [1]
                                   constant() = [0]
                                                [0]
                                   0() = [1]
                                         [1]
                                   +(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
                                               [0 0]      [0 0]      [0]
                                   *(x1, x2) = [0 0] x1 + [1 1] x2 + [1]
                                               [0 0]      [0 0]      [2]
                                   -(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                               [0 0]      [0 0]      [0]
                                   D^#(x1) = [0 0] x1 + [0]
                                             [0 0]      [0]
                                   c_1() = [0]
                                           [0]
                                   c_2() = [0]
                                           [0]
                                   c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [3]
                                   c_4(x1, x2, x3, x4) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1 0] x4 + [3]
                                                         [3 2]      [0 1]      [3 2]      [0 1]      [3]
                                   c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [3]
                                
                                The strictly oriented rules are moved into the weak component.
                                
                                We consider the following Problem:
                                
                                  Strict DPs:
                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                  Strict Trs:
                                    {  D(+(x, y)) -> +(D(x), D(y))
                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                     , D(-(x, y)) -> -(D(x), D(y))}
                                  Weak DPs:
                                    {  D^#(t()) -> c_1()
                                     , D^#(constant()) -> c_2()}
                                  Weak Trs:
                                    {  D(t()) -> 1()
                                     , D(constant()) -> 0()}
                                  StartTerms: basic terms
                                  Strategy: none
                                
                                Certificate: MAYBE
                                
                                Application of 'removetails >>> ... >>> ... >>> ...':
                                -----------------------------------------------------
                                  The processor is inapplicable since the strict component of the
                                  input problem is not empty
                                  
                                  We abort the transformation and continue with the subprocessor on the problem
                                  
                                  Strict DPs:
                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                  Strict Trs:
                                    {  D(+(x, y)) -> +(D(x), D(y))
                                     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                     , D(-(x, y)) -> -(D(x), D(y))}
                                  Weak DPs:
                                    {  D^#(t()) -> c_1()
                                     , D^#(constant()) -> c_2()}
                                  Weak Trs:
                                    {  D(t()) -> 1()
                                     , D(constant()) -> 0()}
                                  StartTerms: basic terms
                                  Strategy: none
                                  
                                  1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                     
                                       The weightgap principle does not apply
                                     
                                     We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                     
                                     Strict DPs:
                                       {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                        , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                     Strict Trs:
                                       {  D(+(x, y)) -> +(D(x), D(y))
                                        , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                        , D(-(x, y)) -> -(D(x), D(y))}
                                     Weak DPs:
                                       {  D^#(t()) -> c_1()
                                        , D^#(constant()) -> c_2()}
                                     Weak Trs:
                                       {  D(t()) -> 1()
                                        , D(constant()) -> 0()}
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                       The weightgap principle applies, where following rules are oriented strictly:
                                       
                                       Dependency Pairs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                       
                                       Interpretation:
                                       ---------------
                                         The following argument positions are usable:
                                           Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                           Uargs(-) = {1, 2}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                           Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                         We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                         Interpretation Functions:
                                          D(x1) = [0 0 0] x1 + [0]
                                                  [0 0 1]      [0]
                                                  [0 0 0]      [0]
                                          t() = [0]
                                                [0]
                                                [0]
                                          1() = [0]
                                                [0]
                                                [0]
                                          constant() = [0]
                                                       [0]
                                                       [0]
                                          0() = [0]
                                                [0]
                                                [0]
                                          +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                      [0 0 0]      [0 1 2]      [0]
                                                      [0 0 1]      [0 0 1]      [1]
                                          *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                      [0 1 2]      [0 1 0]      [0]
                                                      [0 0 1]      [0 0 1]      [0]
                                          -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                      [0 0 0]      [0 1 0]      [0]
                                                      [0 0 1]      [0 0 1]      [0]
                                          D^#(x1) = [0 0 2] x1 + [0]
                                                    [0 0 0]      [0]
                                                    [0 0 0]      [0]
                                          c_1() = [0]
                                                  [0]
                                                  [0]
                                          c_2() = [0]
                                                  [0]
                                                  [0]
                                          c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                        [0 1 0]      [0 1 0]      [0]
                                                        [0 0 1]      [0 0 1]      [0]
                                          c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [3]
                                                                [3 3 0]      [0 1 0]      [3 0 2]      [0 1 0]      [3]
                                                                [3 0 0]      [0 0 1]      [3 0 3]      [0 0 1]      [3]
                                          c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                        [0 1 0]      [0 1 0]      [3]
                                                        [0 0 1]      [0 0 1]      [3]
                                       
                                       The strictly oriented rules are moved into the weak component.
                                     
                                     We consider the following Problem:
                                     
                                       Strict DPs:
                                         {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                       Strict Trs:
                                         {  D(+(x, y)) -> +(D(x), D(y))
                                          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                          , D(-(x, y)) -> -(D(x), D(y))}
                                       Weak DPs:
                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                          , D^#(t()) -> c_1()
                                          , D^#(constant()) -> c_2()}
                                       Weak Trs:
                                         {  D(t()) -> 1()
                                          , D(constant()) -> 0()}
                                       StartTerms: basic terms
                                       Strategy: none
                                     
                                     Certificate: MAYBE
                                     
                                     Application of 'removetails >>> ... >>> ... >>> ...':
                                     -----------------------------------------------------
                                       The processor is inapplicable since the strict component of
                                       the input problem is not empty
                                       
                                       We abort the transformation and continue with the subprocessor on the problem
                                       
                                       Strict DPs:
                                         {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                       Strict Trs:
                                         {  D(+(x, y)) -> +(D(x), D(y))
                                          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                          , D(-(x, y)) -> -(D(x), D(y))}
                                       Weak DPs:
                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                          , D^#(t()) -> c_1()
                                          , D^#(constant()) -> c_2()}
                                       Weak Trs:
                                         {  D(t()) -> 1()
                                          , D(constant()) -> 0()}
                                       StartTerms: basic terms
                                       Strategy: none
                                       
                                       1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                          
                                            The weightgap principle does not apply
                                          
                                          We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                          
                                          Strict DPs:
                                            {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                             , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                          Strict Trs:
                                            {  D(+(x, y)) -> +(D(x), D(y))
                                             , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                             , D(-(x, y)) -> -(D(x), D(y))}
                                          Weak DPs:
                                            {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                             , D^#(t()) -> c_1()
                                             , D^#(constant()) -> c_2()}
                                          Weak Trs:
                                            {  D(t()) -> 1()
                                             , D(constant()) -> 0()}
                                          StartTerms: basic terms
                                          Strategy: none
                                          
                                            The weightgap principle applies, where following rules are oriented strictly:
                                            
                                            Dependency Pairs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                            
                                            Interpretation:
                                            ---------------
                                              The following argument positions are usable:
                                                Uargs(D) = {}, Uargs(+) = {1, 2}, Uargs(*) = {2},
                                                Uargs(-) = {1, 2}, Uargs(D^#) = {},
                                                Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4},
                                                Uargs(c_5) = {1, 2}
                                              We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                              Interpretation Functions:
                                               D(x1) = [0 0 0] x1 + [0]
                                                       [0 0 0]      [0]
                                                       [0 0 0]      [0]
                                               t() = [0]
                                                     [0]
                                                     [0]
                                               1() = [0]
                                                     [0]
                                                     [0]
                                               constant() = [0]
                                                            [0]
                                                            [0]
                                               0() = [0]
                                                     [0]
                                                     [0]
                                               +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                           [0 0 0]      [0 0 0]      [0]
                                                           [0 0 1]      [0 0 1]      [0]
                                               *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                           [0 0 0]      [0 0 0]      [0]
                                                           [0 0 1]      [0 0 1]      [0]
                                               -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                           [0 0 0]      [0 0 0]      [0]
                                                           [0 0 1]      [0 0 1]      [1]
                                               D^#(x1) = [0 0 1] x1 + [0]
                                                         [0 0 0]      [0]
                                                         [0 0 0]      [0]
                                               c_1() = [0]
                                                       [0]
                                                       [0]
                                               c_2() = [0]
                                                       [0]
                                                       [0]
                                               c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                             [0 1 0]      [0 1 0]      [0]
                                                             [0 0 1]      [0 0 1]      [0]
                                               c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [3]
                                                                     [3 0 0]      [0 1 0]      [3 3 0]      [0 1 0]      [3]
                                                                     [3 0 0]      [0 0 1]      [3 0 0]      [0 0 1]      [3]
                                               c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                             [0 1 0]      [0 1 0]      [0]
                                                             [0 0 1]      [0 0 1]      [0]
                                            
                                            The strictly oriented rules are moved into the weak component.
                                          
                                          We consider the following Problem:
                                          
                                            Strict DPs: {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                            Strict Trs:
                                              {  D(+(x, y)) -> +(D(x), D(y))
                                               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                               , D(-(x, y)) -> -(D(x), D(y))}
                                            Weak DPs:
                                              {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                               , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                               , D^#(t()) -> c_1()
                                               , D^#(constant()) -> c_2()}
                                            Weak Trs:
                                              {  D(t()) -> 1()
                                               , D(constant()) -> 0()}
                                            StartTerms: basic terms
                                            Strategy: none
                                          
                                          Certificate: MAYBE
                                          
                                          Application of 'removetails >>> ... >>> ... >>> ...':
                                          -----------------------------------------------------
                                            The processor is inapplicable since the strict component
                                            of the input problem is not empty
                                            
                                            We abort the transformation and continue with the subprocessor on the problem
                                            
                                            Strict DPs: {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                            Strict Trs:
                                              {  D(+(x, y)) -> +(D(x), D(y))
                                               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                               , D(-(x, y)) -> -(D(x), D(y))}
                                            Weak DPs:
                                              {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                               , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                               , D^#(t()) -> c_1()
                                               , D^#(constant()) -> c_2()}
                                            Weak Trs:
                                              {  D(t()) -> 1()
                                               , D(constant()) -> 0()}
                                            StartTerms: basic terms
                                            Strategy: none
                                            
                                            1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                               
                                                 The weightgap principle does not apply
                                               
                                               We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                               
                                               Strict DPs:
                                                 {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                               Strict Trs:
                                                 {  D(+(x, y)) -> +(D(x), D(y))
                                                  , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                                  , D(-(x, y)) -> -(D(x), D(y))}
                                               Weak DPs:
                                                 {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                  , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                  , D^#(t()) -> c_1()
                                                  , D^#(constant()) -> c_2()}
                                               Weak Trs:
                                                 {  D(t()) -> 1()
                                                  , D(constant()) -> 0()}
                                               StartTerms: basic terms
                                               Strategy: none
                                               
                                                 The weightgap principle applies, where following rules are oriented strictly:
                                                 
                                                 Dependency Pairs:
                                                   {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
                                                 
                                                 Interpretation:
                                                 ---------------
                                                   The following argument positions are usable:
                                                     Uargs(D) = {}, Uargs(+) = {1, 2},
                                                     Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                     Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                     Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                                   We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                   Interpretation Functions:
                                                    D(x1) = [0 0 0] x1 + [0]
                                                            [0 0 0]      [0]
                                                            [0 0 0]      [0]
                                                    t() = [0]
                                                          [0]
                                                          [0]
                                                    1() = [0]
                                                          [0]
                                                          [0]
                                                    constant() = [0]
                                                                 [0]
                                                                 [0]
                                                    0() = [0]
                                                          [0]
                                                          [0]
                                                    +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                [0 1 2]      [0 1 2]      [0]
                                                                [0 0 0]      [0 0 0]      [0]
                                                    *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                [0 1 1]      [0 1 2]      [2]
                                                                [0 0 0]      [0 0 0]      [2]
                                                    -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                [0 1 0]      [0 1 0]      [0]
                                                                [0 0 1]      [0 0 1]      [0]
                                                    D^#(x1) = [0 2 2] x1 + [0]
                                                              [0 0 0]      [0]
                                                              [0 0 0]      [0]
                                                    c_1() = [0]
                                                            [0]
                                                            [0]
                                                    c_2() = [0]
                                                            [0]
                                                            [0]
                                                    c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                  [0 1 0]      [0 1 0]      [0]
                                                                  [0 0 1]      [0 0 1]      [0]
                                                    c_4(x1, x2, x3, x4) = [0 0 1] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [3]
                                                                          [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                          [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                    c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                  [0 1 0]      [0 1 0]      [0]
                                                                  [0 0 1]      [0 0 1]      [0]
                                                 
                                                 The strictly oriented rules are moved into the weak component.
                                               
                                               We consider the following Problem:
                                               
                                                 Strict Trs:
                                                   {  D(+(x, y)) -> +(D(x), D(y))
                                                    , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                                    , D(-(x, y)) -> -(D(x), D(y))}
                                                 Weak DPs:
                                                   {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                    , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                    , D^#(t()) -> c_1()
                                                    , D^#(constant()) -> c_2()}
                                                 Weak Trs:
                                                   {  D(t()) -> 1()
                                                    , D(constant()) -> 0()}
                                                 StartTerms: basic terms
                                                 Strategy: none
                                               
                                               Certificate: MAYBE
                                               
                                               Application of 'removetails >>> ... >>> ... >>> ...':
                                               -----------------------------------------------------
                                                 The processor is inapplicable since the strict
                                                 component of the input problem is not empty
                                                 
                                                 We abort the transformation and continue with the subprocessor on the problem
                                                 
                                                 Strict Trs:
                                                   {  D(+(x, y)) -> +(D(x), D(y))
                                                    , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                                    , D(-(x, y)) -> -(D(x), D(y))}
                                                 Weak DPs:
                                                   {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                    , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                    , D^#(t()) -> c_1()
                                                    , D^#(constant()) -> c_2()}
                                                 Weak Trs:
                                                   {  D(t()) -> 1()
                                                    , D(constant()) -> 0()}
                                                 StartTerms: basic terms
                                                 Strategy: none
                                                 
                                                 1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                    
                                                      The weightgap principle does not apply
                                                    
                                                    We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                    
                                                    Strict Trs:
                                                      {  D(+(x, y)) -> +(D(x), D(y))
                                                       , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
                                                       , D(-(x, y)) -> -(D(x), D(y))}
                                                    Weak DPs:
                                                      {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                       , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                       , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                       , D^#(t()) -> c_1()
                                                       , D^#(constant()) -> c_2()}
                                                    Weak Trs:
                                                      {  D(t()) -> 1()
                                                       , D(constant()) -> 0()}
                                                    StartTerms: basic terms
                                                    Strategy: none
                                                    
                                                      The weightgap principle applies, where following rules are oriented strictly:
                                                      
                                                      TRS Component: {D(-(x, y)) -> -(D(x), D(y))}
                                                      
                                                      Interpretation:
                                                      ---------------
                                                        The following argument positions are usable:
                                                          Uargs(D) = {}, Uargs(+) = {1, 2},
                                                          Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                          Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                          Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2}
                                                        We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                        Interpretation Functions:
                                                         D(x1) = [0 0 1] x1 + [0]
                                                                 [0 0 1]      [0]
                                                                 [0 2 0]      [0]
                                                         t() = [0]
                                                               [0]
                                                               [0]
                                                         1() = [0]
                                                               [0]
                                                               [0]
                                                         constant() = [0]
                                                                      [0]
                                                                      [0]
                                                         0() = [0]
                                                               [0]
                                                               [0]
                                                         +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                     [0 1 0]      [0 0 0]      [0]
                                                                     [0 0 1]      [0 0 1]      [0]
                                                         *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                     [0 0 0]      [0 0 0]      [0]
                                                                     [0 0 1]      [0 0 1]      [0]
                                                         -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                     [0 1 0]      [0 1 0]      [2]
                                                                     [0 0 1]      [0 0 1]      [2]
                                                         D^#(x1) = [0 0 2] x1 + [0]
                                                                   [0 0 0]      [0]
                                                                   [0 0 0]      [0]
                                                         c_1() = [0]
                                                                 [0]
                                                                 [0]
                                                         c_2() = [0]
                                                                 [0]
                                                                 [0]
                                                         c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                       [0 1 0]      [0 1 0]      [0]
                                                                       [0 0 1]      [0 0 1]      [0]
                                                         c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                               [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                               [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                         c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [3]
                                                                       [0 1 0]      [0 1 0]      [0]
                                                                       [0 0 1]      [0 0 1]      [0]
                                                      
                                                      The strictly oriented rules are moved into the weak component.
                                                    
                                                    We consider the following Problem:
                                                    
                                                      Strict Trs:
                                                        {  D(+(x, y)) -> +(D(x), D(y))
                                                         , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                      Weak DPs:
                                                        {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                         , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                         , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                         , D^#(t()) -> c_1()
                                                         , D^#(constant()) -> c_2()}
                                                      Weak Trs:
                                                        {  D(-(x, y)) -> -(D(x), D(y))
                                                         , D(t()) -> 1()
                                                         , D(constant()) -> 0()}
                                                      StartTerms: basic terms
                                                      Strategy: none
                                                    
                                                    Certificate: MAYBE
                                                    
                                                    Application of 'removetails >>> ... >>> ... >>> ...':
                                                    -----------------------------------------------------
                                                      The processor is inapplicable since the strict
                                                      component of the input problem is not empty
                                                      
                                                      We abort the transformation and continue with the subprocessor on the problem
                                                      
                                                      Strict Trs:
                                                        {  D(+(x, y)) -> +(D(x), D(y))
                                                         , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))}
                                                      Weak DPs:
                                                        {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
                                                         , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                         , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                         , D^#(t()) -> c_1()
                                                         , D^#(constant()) -> c_2()}
                                                      Weak Trs:
                                                        {  D(-(x, y)) -> -(D(x), D(y))
                                                         , D(t()) -> 1()
                                                         , D(constant()) -> 0()}
                                                      StartTerms: basic terms
                                                      Strategy: none
                                                      
                                                      1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                         
                                                           The weightgap principle does not apply
                                                         
                                                         We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                         
                                                         Strict Trs:
                                                           {  D(+(x, y)) -> +(D(x), D(y))
                                                            , D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                         Weak DPs:
                                                           {  D^#(*(x, y)) ->
                                                              c_4(y, D^#(x), x, D^#(y))
                                                            , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                            , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                            , D^#(t()) -> c_1()
                                                            , D^#(constant()) -> c_2()}
                                                         Weak Trs:
                                                           {  D(-(x, y)) -> -(D(x), D(y))
                                                            , D(t()) -> 1()
                                                            , D(constant()) -> 0()}
                                                         StartTerms: basic terms
                                                         Strategy: none
                                                         
                                                           The weightgap principle applies, where following rules are oriented strictly:
                                                           
                                                           TRS Component:
                                                             {D(+(x, y)) -> +(D(x), D(y))}
                                                           
                                                           Interpretation:
                                                           ---------------
                                                             The following argument positions are usable:
                                                               Uargs(D) = {}, Uargs(+) = {1, 2},
                                                               Uargs(*) = {2}, Uargs(-) = {1, 2},
                                                               Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                               Uargs(c_4) = {2, 4},
                                                               Uargs(c_5) = {1, 2}
                                                             We have the following constructor-restricted (at most 3 in the main diagonals) matrix interpretation:
                                                             Interpretation Functions:
                                                              D(x1) = [0 0 1] x1 + [0]
                                                                      [0 0 0]      [0]
                                                                      [2 0 0]      [0]
                                                              t() = [0]
                                                                    [0]
                                                                    [0]
                                                              1() = [0]
                                                                    [0]
                                                                    [0]
                                                              constant() = [0]
                                                                           [0]
                                                                           [0]
                                                              0() = [0]
                                                                    [0]
                                                                    [0]
                                                              +(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [1]
                                                                          [0 0 0]      [0 0 0]      [0]
                                                                          [0 0 1]      [0 0 1]      [2]
                                                              *(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                                                                          [0 0 0]      [0 0 0]      [0]
                                                                          [0 0 1]      [0 0 1]      [0]
                                                              -(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                          [0 0 0]      [0 0 0]      [0]
                                                                          [0 0 1]      [0 0 1]      [0]
                                                              D^#(x1) = [0 0 0] x1 + [0]
                                                                        [0 0 0]      [0]
                                                                        [0 0 0]      [0]
                                                              c_1() = [0]
                                                                      [0]
                                                                      [0]
                                                              c_2() = [0]
                                                                      [0]
                                                                      [0]
                                                              c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                            [0 1 0]      [0 1 0]      [0]
                                                                            [0 0 1]      [0 0 1]      [0]
                                                              c_4(x1, x2, x3, x4) = [0 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [0]
                                                                                    [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                                                                    [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
                                                              c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                                                            [0 1 0]      [0 1 0]      [0]
                                                                            [0 0 1]      [0 0 1]      [0]
                                                           
                                                           The strictly oriented rules are moved into the weak component.
                                                         
                                                         We consider the following Problem:
                                                         
                                                           Strict Trs:
                                                             {D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                           Weak DPs:
                                                             {  D^#(*(x, y)) ->
                                                                c_4(y, D^#(x), x, D^#(y))
                                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                              , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                              , D^#(t()) -> c_1()
                                                              , D^#(constant()) -> c_2()}
                                                           Weak Trs:
                                                             {  D(+(x, y)) -> +(D(x), D(y))
                                                              , D(-(x, y)) -> -(D(x), D(y))
                                                              , D(t()) -> 1()
                                                              , D(constant()) -> 0()}
                                                           StartTerms: basic terms
                                                           Strategy: none
                                                         
                                                         Certificate: MAYBE
                                                         
                                                         Application of 'removetails >>> ... >>> ... >>> ...':
                                                         -----------------------------------------------------
                                                           The processor is inapplicable since the
                                                           strict component of the input problem is
                                                           not empty
                                                           
                                                           We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                                           Sub-problem 1:
                                                           --------------
                                                             We consider the problem
                                                             
                                                             Strict Trs:
                                                               {D(*(x, y)) ->
                                                                +(*(y, D(x)), *(x, D(y)))}
                                                             Weak DPs:
                                                               {  D^#(*(x, y)) ->
                                                                  c_4(y, D^#(x), x, D^#(y))
                                                                , D^#(-(x, y)) ->
                                                                  c_5(D^#(x), D^#(y))
                                                                , D^#(+(x, y)) ->
                                                                  c_3(D^#(x), D^#(y))
                                                                , D^#(t()) -> c_1()
                                                                , D^#(constant()) -> c_2()}
                                                             Weak Trs:
                                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                                , D(-(x, y)) -> -(D(x), D(y))
                                                                , D(t()) -> 1()
                                                                , D(constant()) -> 0()}
                                                             StartTerms: basic terms
                                                             Strategy: none
                                                             
                                                             We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                             
                                                               The weightgap principle does not apply
                                                             
                                                             We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                             
                                                             Strict Trs:
                                                               {D(*(x, y)) ->
                                                                +(*(y, D(x)), *(x, D(y)))}
                                                             Weak DPs:
                                                               {  D^#(*(x, y)) ->
                                                                  c_4(y, D^#(x), x, D^#(y))
                                                                , D^#(-(x, y)) ->
                                                                  c_5(D^#(x), D^#(y))
                                                                , D^#(+(x, y)) ->
                                                                  c_3(D^#(x), D^#(y))
                                                                , D^#(t()) -> c_1()
                                                                , D^#(constant()) -> c_2()}
                                                             Weak Trs:
                                                               {  D(+(x, y)) -> +(D(x), D(y))
                                                                , D(-(x, y)) -> -(D(x), D(y))
                                                                , D(t()) -> 1()
                                                                , D(constant()) -> 0()}
                                                             StartTerms: basic terms
                                                             Strategy: none
                                                             
                                                               We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                               
                                                                 The weightgap principle does not apply
                                                               
                                                               We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                               
                                                               Strict Trs:
                                                                 {D(*(x, y)) ->
                                                                  +(*(y, D(x)), *(x, D(y)))}
                                                               Weak DPs:
                                                                 {  D^#(*(x, y)) ->
                                                                    c_4(y, D^#(x), x, D^#(y))
                                                                  , D^#(-(x, y)) ->
                                                                    c_5(D^#(x), D^#(y))
                                                                  , D^#(+(x, y)) ->
                                                                    c_3(D^#(x), D^#(y))
                                                                  , D^#(t()) -> c_1()
                                                                  , D^#(constant()) -> c_2()}
                                                               Weak Trs:
                                                                 {  D(+(x, y)) -> +(D(x), D(y))
                                                                  , D(-(x, y)) -> -(D(x), D(y))
                                                                  , D(t()) -> 1()
                                                                  , D(constant()) -> 0()}
                                                               StartTerms: basic terms
                                                               Strategy: none
                                                               
                                                                 The weightgap principle does not apply
                                                           
                                                           We abort the transformation and continue with the subprocessor on the problem
                                                           
                                                           Strict Trs:
                                                             {D(*(x, y)) ->
                                                              +(*(y, D(x)), *(x, D(y)))}
                                                           Weak DPs:
                                                             {  D^#(*(x, y)) ->
                                                                c_4(y, D^#(x), x, D^#(y))
                                                              , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                              , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                              , D^#(t()) -> c_1()
                                                              , D^#(constant()) -> c_2()}
                                                           Weak Trs:
                                                             {  D(+(x, y)) -> +(D(x), D(y))
                                                              , D(-(x, y)) -> -(D(x), D(y))
                                                              , D(t()) -> 1()
                                                              , D(constant()) -> 0()}
                                                           StartTerms: basic terms
                                                           Strategy: none
                                                           
                                                           1) None of the processors succeeded.
                                                              
                                                              Details of failed attempt(s):
                                                              -----------------------------
                                                                1) 'empty' failed due to the following reason:
                                                                     Empty strict component of the problem is NOT empty.
                                                                
                                                                2) 'Fastest' failed due to the following reason:
                                                                     None of the processors succeeded.
                                                                     
                                                                     Details of failed attempt(s):
                                                                     -----------------------------
                                                                       1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                            The input cannot be shown compatible
                                                                       
                                                                       2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                            The input cannot be shown compatible
                                                                       
                                                                       3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                            The input cannot be shown compatible
                                                                       
                                                                
                                                           
                                                      
                                                 
                                            
                                       
                                  
                             
                        
                     
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 08

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  'dp' proved the goal fastest:
  
  We have computed the following dependency pairs
  
  Strict Dependency Pairs:
    {  D^#(t()) -> c_1()
     , D^#(constant()) -> c_2()
     , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
  
  We consider the following Problem:
  
    Strict DPs:
      {  D^#(t()) -> c_1()
       , D^#(constant()) -> c_2()
       , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
       , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
       , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
    Strict Trs:
      {  D(t()) -> 1()
       , D(constant()) -> 0()
       , D(+(x, y)) -> +(D(x), D(y))
       , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
       , D(-(x, y)) -> -(D(x), D(y))}
    StartTerms: basic terms
    Strategy: none
  
  Certificate: YES(?,O(n^1))
  
  Application of 'usablerules':
  -----------------------------
    No rule is usable.
    
    We consider the following Problem:
    
      Strict DPs:
        {  D^#(t()) -> c_1()
         , D^#(constant()) -> c_2()
         , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
         , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
         , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
      StartTerms: basic terms
      Strategy: none
    
    Certificate: YES(?,O(n^1))
    
    Application of 'Fastest':
    -------------------------
      'removetails >>> ... >>> ... >>> ...' proved the goal fastest:
      
      We consider the the dependency-graph
      
        1: D^#(t()) -> c_1()
        
        2: D^#(constant()) -> c_2()
        
        3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        4: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
      
      together with the congruence-graph
      
        ->{3,5,4}
           |
           |->{1}                                                   Noncyclic, trivial, SCC
           |
           `->{2}                                                   Noncyclic, trivial, SCC
        
        
        Here rules are as follows:
        
          {  1: D^#(t()) -> c_1()
           , 2: D^#(constant()) -> c_2()
           , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
           , 4: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
           , 5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
      
      The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
      
        {  2: D^#(constant()) -> c_2()
         , 1: D^#(t()) -> c_1()}
      
      We consider the following Problem:
      
        Strict DPs:
          {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
           , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
        StartTerms: basic terms
        Strategy: none
      
      Certificate: YES(?,O(n^1))
      
      Application of 'simpDPRHS >>> ...':
      -----------------------------------
        The right-hand sides of following rules could be simplified:
        
          {D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))}
        
        We consider the following Problem:
        
          Strict DPs:
            {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
             , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
             , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'usablerules':
        -----------------------------
          No rule is usable.
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs:
            {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
             , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
             , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             Dependency Pairs: {D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                 Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                D(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                t() = [0]
                      [0]
                1() = [0]
                      [0]
                constant() = [0]
                             [0]
                0() = [0]
                      [0]
                +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                -(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                            [0 0]      [0 0]      [0]
                D^#(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                              [0 1]      [0 1]      [3]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                              [0 1]      [0 1]      [3]
                c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 1]      [0 1]      [0]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict DPs:
                 {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                  , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
               Weak DPs: {D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               No dependency-pair could be removed
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict DPs:
                 {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                  , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
               Weak DPs: {D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  Dependency Pairs: {D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                      Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                      Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     D(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                     t() = [0]
                           [0]
                     1() = [0]
                           [0]
                     constant() = [0]
                                  [0]
                     0() = [0]
                           [0]
                     +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                     *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [2]
                     -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                     D^#(x1) = [0 1] x1 + [0]
                               [0 0]      [0]
                     c_1() = [0]
                             [0]
                     c_2() = [0]
                             [0]
                     c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                     c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                     c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                     c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 1]      [0 1]      [3]
                     c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 1]      [0 1]      [0]
                     c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                   [0 1]      [0 1]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict DPs: {D^#(+(x, y)) -> c_1(D^#(x), D^#(y))}
                    Weak DPs:
                      {  D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                       , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    No dependency-pair could be removed
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict DPs: {D^#(+(x, y)) -> c_1(D^#(x), D^#(y))}
                    Weak DPs:
                      {  D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                       , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       Dependency Pairs: {D^#(+(x, y)) -> c_1(D^#(x), D^#(y))}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                           Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                           Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          D(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                          t() = [0]
                                [0]
                          1() = [0]
                                [0]
                          constant() = [0]
                                       [0]
                          0() = [0]
                                [0]
                          +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 1]      [2]
                          *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 1]      [2]
                          -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 1]      [0]
                          D^#(x1) = [0 2] x1 + [0]
                                    [0 0]      [0]
                          c_1() = [0]
                                  [0]
                          c_2() = [0]
                                  [0]
                          c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                          c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0]
                          c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                          c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                        [0 1]      [0 1]      [0]
                          c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                        [0 1]      [0 1]      [0]
                          c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                        [0 1]      [0 1]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Weak DPs:
                           {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(O(1),O(1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         We consider the the dependency-graph
                         
                           1: D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                           
                           2: D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                           
                           3: D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                           
                         
                         together with the congruence-graph
                         
                           ->{1,3,2}                                                   Weak SCC
                           
                           
                           Here rules are as follows:
                           
                             {  1: D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                              , 2: D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                              , 3: D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                         
                         The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                         
                           {  1: D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                            , 3: D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                            , 2: D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
                         
                         We consider the following Problem:
                         
                           StartTerms: basic terms
                           Strategy: none
                         
                         Certificate: YES(O(1),O(1))
                         
                         Application of 'simpDPRHS >>> ...':
                         -----------------------------------
                           No rule was simplified
                           
                           We apply the transformation 'usablerules' on the resulting sub-problems:
                           Sub-problem 1:
                           --------------
                             We consider the problem
                             
                             StartTerms: basic terms
                             Strategy: none
                             
                             The input problem is not a DP-problem.
                           
                           We abort the transformation and continue with the subprocessor on the problem
                           
                           StartTerms: basic terms
                           Strategy: none
                           
                           1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                              
                                All strict components are empty, nothing to further orient
                              
                              We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                              
                              StartTerms: basic terms
                              Strategy: none
                              
                                We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                
                                  All strict components are empty, nothing to further orient
                                
                                We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                
                                StartTerms: basic terms
                                Strategy: none
                                
                                  All strict components are empty, nothing to further orient
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) No dependency-pair could be removed
                                 
                                 We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                 Sub-problem 1:
                                 --------------
                                   We consider the problem
                                   
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                   
                                     All strict components are empty, nothing to further orient
                                   
                                   We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                   
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                     We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                     
                                       All strict components are empty, nothing to further orient
                                     
                                     We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                     
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                       All strict components are empty, nothing to further orient
                                 
                                 We abort the transformation and continue with the subprocessor on the problem
                                 
                                 StartTerms: basic terms
                                 Strategy: none
                                 
                                 1) 'Sequentially' proved the goal fastest:
                                    
                                    'empty' succeeded:
                                    
                                    Empty rules are trivially bounded
                                 
                              
                           
                    
               
          

Hurray, we answered YES(?,O(n^1))

Tool tup3irc

Execution Time3.415903ms
Answer
YES(?,O(n^1))
InputDer95 08

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'dp' proved the goal fastest:
     
     We have computed the following dependency pairs
     
     Strict Dependency Pairs:
       {  D^#(t()) -> c_1()
        , D^#(constant()) -> c_2()
        , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
        , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
     
     We consider the following Problem:
     
       Strict DPs:
         {  D^#(t()) -> c_1()
          , D^#(constant()) -> c_2()
          , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
       Weak Trs:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))}
       StartTerms: basic terms
       Strategy: innermost
     
     Certificate: YES(?,O(n^1))
     
     Application of 'Fastest':
     -------------------------
       'compose (statically using 'split all congruence from CWD except leafs', multiplication)' proved the goal fastest:
       
       Compose is inapplicable since some weak rule is size increasing
       
       We abort the transformation and continue with the subprocessor on the problem
       
       Strict DPs:
         {  D^#(t()) -> c_1()
          , D^#(constant()) -> c_2()
          , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
       Weak Trs:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))}
       StartTerms: basic terms
       Strategy: innermost
       
       1) We consider the the dependency-graph
          
            1: D^#(t()) -> c_1()
            
            2: D^#(constant()) -> c_2()
            
            3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            4: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
          
          together with the congruence-graph
          
            ->{3,5,4}
               |
               |->{1}                                                   Noncyclic, trivial, SCC
               |
               `->{2}                                                   Noncyclic, trivial, SCC
            
            
            Here rules are as follows:
            
              {  1: D^#(t()) -> c_1()
               , 2: D^#(constant()) -> c_2()
               , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , 4: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , 5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
          
          The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
          
            {  2: D^#(constant()) -> c_2()
             , 1: D^#(t()) -> c_1()}
          
          We consider the following Problem:
          
            Strict DPs:
              {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
            Weak Trs:
              {  D(t()) -> 1()
               , D(constant()) -> 0()
               , D(+(x, y)) -> +(D(x), D(y))
               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
               , D(-(x, y)) -> -(D(x), D(y))}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Application of 'simpDPRHS >>> ...':
          -----------------------------------
            No rule was simplified
            
            We abort the transformation and continue with the subprocessor on the problem
            
            Strict DPs:
              {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
            Weak Trs:
              {  D(t()) -> 1()
               , D(constant()) -> 0()
               , D(+(x, y)) -> +(D(x), D(y))
               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
               , D(-(x, y)) -> -(D(x), D(y))}
            StartTerms: basic terms
            Strategy: innermost
            
            1) No rule is usable.
               
               We consider the following Problem:
               
                 Strict DPs:
                   {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                    , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                 StartTerms: basic terms
                 Strategy: innermost
               
               Certificate: YES(?,O(n^1))
               
               Application of 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...':
               --------------------------------------------------------------------------------
                 The weightgap principle applies, where following rules are oriented strictly:
                 
                 Dependency Pairs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                 
                 Interpretation:
                 ---------------
                   The following argument positions are usable:
                     Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                     Uargs(D^#) = {}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
                     Uargs(c_5) = {1, 2}
                   We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                   Interpretation Functions:
                    D(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                    t() = [0]
                          [0]
                    1() = [0]
                          [0]
                    constant() = [0]
                                 [0]
                    0() = [0]
                          [0]
                    +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                    *(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                    -(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                [0 0]      [0 0]      [0]
                    D^#(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
                    c_1() = [0]
                            [0]
                    c_2() = [0]
                            [0]
                    c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                  [0 1]      [0 1]      [3]
                    c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                  [0 1]      [0 1]      [3]
                    c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                  [0 1]      [0 1]      [0]
                 
                 The strictly oriented rules are moved into the weak component.
                 
                 We consider the following Problem:
                 
                   Strict DPs:
                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                      , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                   Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                   StartTerms: basic terms
                   Strategy: innermost
                 
                 Certificate: YES(?,O(n^1))
                 
                 Application of 'removetails >>> ... >>> ... >>> ...':
                 -----------------------------------------------------
                   No dependency-pair could be removed
                   
                   We abort the transformation and continue with the subprocessor on the problem
                   
                   Strict DPs:
                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                      , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                   Weak DPs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                   StartTerms: basic terms
                   Strategy: innermost
                   
                   1) The weightgap principle applies, where following rules are oriented strictly:
                      
                      Dependency Pairs: {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                      
                      Interpretation:
                      ---------------
                        The following argument positions are usable:
                          Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                          Uargs(D^#) = {}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
                          Uargs(c_5) = {1, 2}
                        We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                        Interpretation Functions:
                         D(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                         t() = [0]
                               [0]
                         1() = [0]
                               [0]
                         constant() = [0]
                                      [0]
                         0() = [0]
                               [0]
                         +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [0]
                         *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [2]
                         -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [0]
                         D^#(x1) = [0 1] x1 + [0]
                                   [0 0]      [0]
                         c_1() = [0]
                                 [0]
                         c_2() = [0]
                                 [0]
                         c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 1]      [0 1]      [3]
                         c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 1]      [0 1]      [0]
                         c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                       [0 1]      [0 1]      [0]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                        Weak DPs:
                          {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Application of 'removetails >>> ... >>> ... >>> ...':
                      -----------------------------------------------------
                        No dependency-pair could be removed
                        
                        We abort the transformation and continue with the subprocessor on the problem
                        
                        Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                        Weak DPs:
                          {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                        StartTerms: basic terms
                        Strategy: innermost
                        
                        1) The weightgap principle applies, where following rules are oriented strictly:
                           
                           Dependency Pairs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                           
                           Interpretation:
                           ---------------
                             The following argument positions are usable:
                               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                               Uargs(D^#) = {}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
                               Uargs(c_5) = {1, 2}
                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                             Interpretation Functions:
                              D(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                              t() = [0]
                                    [0]
                              1() = [0]
                                    [0]
                              constant() = [0]
                                           [0]
                              0() = [0]
                                    [0]
                              +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 1]      [2]
                              *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 1]      [2]
                              -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 1]      [0]
                              D^#(x1) = [0 2] x1 + [0]
                                        [0 0]      [0]
                              c_1() = [0]
                                      [0]
                              c_2() = [0]
                                      [0]
                              c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                            [0 1]      [0 1]      [0]
                              c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                            [0 1]      [0 1]      [0]
                              c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                            [0 1]      [0 1]      [0]
                           
                           The strictly oriented rules are moved into the weak component.
                           
                           We consider the following Problem:
                           
                             Weak DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                             StartTerms: basic terms
                             Strategy: innermost
                           
                           Certificate: YES(O(1),O(1))
                           
                           Application of 'removetails >>> ... >>> ... >>> ...':
                           -----------------------------------------------------
                             We consider the the dependency-graph
                             
                               1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                    --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                    --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                    --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                               
                               2: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                    --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                    --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                    --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                               
                               3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                    --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                    --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                    --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                               
                             
                             together with the congruence-graph
                             
                               ->{1,3,2}                                                   Weak SCC
                               
                               
                               Here rules are as follows:
                               
                                 {  1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                  , 2: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                  , 3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                             
                             The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                             
                               {  1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , 3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                , 2: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                             
                             We consider the following Problem:
                             
                               StartTerms: basic terms
                               Strategy: innermost
                             
                             Certificate: YES(O(1),O(1))
                             
                             Application of 'simpDPRHS >>> ...':
                             -----------------------------------
                               No rule was simplified
                               
                               We apply the transformation 'usablerules' on the resulting sub-problems:
                               Sub-problem 1:
                               --------------
                                 We consider the problem
                                 
                                 StartTerms: basic terms
                                 Strategy: innermost
                                 
                                 The input problem is not a DP-problem.
                               
                               We abort the transformation and continue with the subprocessor on the problem
                               
                               StartTerms: basic terms
                               Strategy: innermost
                               
                               1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                  
                                    All strict components are empty, nothing to further orient
                                  
                                  We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                  
                                  StartTerms: basic terms
                                  Strategy: innermost
                                  
                                    We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                    
                                      All strict components are empty, nothing to further orient
                                    
                                    We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                    
                                    StartTerms: basic terms
                                    Strategy: innermost
                                    
                                      All strict components are empty, nothing to further orient
                                  
                                  We abort the transformation and continue with the subprocessor on the problem
                                  
                                  StartTerms: basic terms
                                  Strategy: innermost
                                  
                                  1) No dependency-pair could be removed
                                     
                                     We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                     Sub-problem 1:
                                     --------------
                                       We consider the problem
                                       
                                       StartTerms: basic terms
                                       Strategy: innermost
                                       
                                       We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                       
                                         All strict components are empty, nothing to further orient
                                       
                                       We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                       
                                       StartTerms: basic terms
                                       Strategy: innermost
                                       
                                         We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                         
                                           All strict components are empty, nothing to further orient
                                         
                                         We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                         
                                         StartTerms: basic terms
                                         Strategy: innermost
                                         
                                           All strict components are empty, nothing to further orient
                                     
                                     We abort the transformation and continue with the subprocessor on the problem
                                     
                                     StartTerms: basic terms
                                     Strategy: innermost
                                     
                                     1) 'empty' succeeded:
                                        
                                        Empty rules are trivially bounded
                                     
                                  
                               
                        
                   
            
       
  

Hurray, we answered YES(?,O(n^1))