Problem Der95 11

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputDer95 11

stdout:

MAYBE

Problem:
 D(t()) -> 1()
 D(constant()) -> 0()
 D(+(x,y)) -> +(D(x),D(y))
 D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
 D(-(x,y)) -> -(D(x),D(y))
 D(minus(x)) -> minus(D(x))
 D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
 D(ln(x)) -> div(D(x),x)
 D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 11

stdout:

YES(?,O(n^1))

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 11

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^1))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))
          , D(minus(x)) -> minus(D(x))
          , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
          , D(ln(x)) -> div(D(x), x)
          , D(pow(x, y)) ->
            +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: D^#(t()) -> c_0()
            , 2: D^#(constant()) -> c_1()
            , 3: D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
            , 4: D^#(*(x, y)) -> c_3(D^#(x), D^#(y))
            , 5: D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
            , 6: D^#(minus(x)) -> c_5(D^#(x))
            , 7: D^#(div(x, y)) -> c_6(D^#(x), D^#(y))
            , 8: D^#(ln(x)) -> c_7(D^#(x))
            , 9: D^#(pow(x, y)) -> c_8(D^#(x), D^#(y))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3,9,8,7,6,5,4}                                           [   YES(?,O(n^1))    ]
              |
              |->{1}                                                   [   YES(?,O(n^1))    ]
              |
              `->{2}                                                   [   YES(?,O(n^1))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {3,9,8,7,6,5,4}: YES(?,O(n^1))
           -----------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_2) = {1, 2},
               Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1},
               Uargs(c_6) = {1, 2}, Uargs(c_7) = {1}, Uargs(c_8) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [0]
              *(x1, x2) = [1] x1 + [1] x2 + [0]
              -(x1, x2) = [1] x1 + [1] x2 + [0]
              minus(x1) = [1] x1 + [0]
              div(x1, x2) = [1] x1 + [1] x2 + [0]
              pow(x1, x2) = [1] x1 + [1] x2 + [0]
              2() = [0]
              ln(x1) = [1] x1 + [0]
              D^#(x1) = [3] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2) = [1] x1 + [1] x2 + [0]
              c_7(x1) = [1] x1 + [0]
              c_8(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(pow(x, y)) -> c_8(D^#(x), D^#(y))
                , D^#(ln(x)) -> c_7(D^#(x))
                , D^#(div(x, y)) -> c_6(D^#(x), D^#(y))
                , D^#(minus(x)) -> c_5(D^#(x))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(D^#(x), D^#(y))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(minus) = {},
               Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
               Uargs(c_5) = {1}, Uargs(c_6) = {1, 2}, Uargs(c_7) = {1},
               Uargs(c_8) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              +(x1, x2) = [1] x1 + [1] x2 + [4]
              *(x1, x2) = [1] x1 + [1] x2 + [4]
              -(x1, x2) = [1] x1 + [1] x2 + [4]
              minus(x1) = [1] x1 + [4]
              div(x1, x2) = [1] x1 + [1] x2 + [2]
              pow(x1, x2) = [1] x1 + [1] x2 + [4]
              ln(x1) = [1] x1 + [4]
              D^#(x1) = [2] x1 + [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [7]
              c_3(x1, x2) = [1] x1 + [1] x2 + [7]
              c_4(x1, x2) = [1] x1 + [1] x2 + [7]
              c_5(x1) = [1] x1 + [7]
              c_6(x1, x2) = [1] x1 + [1] x2 + [3]
              c_7(x1) = [1] x1 + [7]
              c_8(x1, x2) = [1] x1 + [1] x2 + [7]
         
         * Path {3,9,8,7,6,5,4}->{1}: YES(?,O(n^1))
           ----------------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_2) = {1, 2},
               Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1},
               Uargs(c_6) = {1, 2}, Uargs(c_7) = {1}, Uargs(c_8) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              minus(x1) = [0] x1 + [0]
              div(x1, x2) = [0] x1 + [0] x2 + [0]
              pow(x1, x2) = [0] x1 + [0] x2 + [0]
              2() = [0]
              ln(x1) = [0] x1 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2) = [1] x1 + [1] x2 + [0]
              c_7(x1) = [1] x1 + [0]
              c_8(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {D^#(t()) -> c_0()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(pow(x, y)) -> c_8(D^#(x), D^#(y))
                , D^#(ln(x)) -> c_7(D^#(x))
                , D^#(div(x, y)) -> c_6(D^#(x), D^#(y))
                , D^#(minus(x)) -> c_5(D^#(x))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(D^#(x), D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(minus) = {},
               Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
               Uargs(c_5) = {1}, Uargs(c_6) = {1, 2}, Uargs(c_7) = {1},
               Uargs(c_8) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              t() = [2]
              +(x1, x2) = [1] x1 + [1] x2 + [4]
              *(x1, x2) = [1] x1 + [1] x2 + [2]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              minus(x1) = [1] x1 + [2]
              div(x1, x2) = [1] x1 + [1] x2 + [2]
              pow(x1, x2) = [1] x1 + [1] x2 + [4]
              ln(x1) = [1] x1 + [2]
              D^#(x1) = [2] x1 + [4]
              c_0() = [1]
              c_2(x1, x2) = [1] x1 + [1] x2 + [4]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [2]
              c_6(x1, x2) = [1] x1 + [1] x2 + [0]
              c_7(x1) = [1] x1 + [3]
              c_8(x1, x2) = [1] x1 + [1] x2 + [3]
         
         * Path {3,9,8,7,6,5,4}->{2}: YES(?,O(n^1))
           ----------------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_2) = {1, 2},
               Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1},
               Uargs(c_6) = {1, 2}, Uargs(c_7) = {1}, Uargs(c_8) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              minus(x1) = [0] x1 + [0]
              div(x1, x2) = [0] x1 + [0] x2 + [0]
              pow(x1, x2) = [0] x1 + [0] x2 + [0]
              2() = [0]
              ln(x1) = [0] x1 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2) = [1] x1 + [1] x2 + [0]
              c_7(x1) = [1] x1 + [0]
              c_8(x1, x2) = [1] x1 + [1] x2 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {D^#(constant()) -> c_1()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(pow(x, y)) -> c_8(D^#(x), D^#(y))
                , D^#(ln(x)) -> c_7(D^#(x))
                , D^#(div(x, y)) -> c_6(D^#(x), D^#(y))
                , D^#(minus(x)) -> c_5(D^#(x))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(D^#(x), D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(minus) = {},
               Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
               Uargs(c_5) = {1}, Uargs(c_6) = {1, 2}, Uargs(c_7) = {1},
               Uargs(c_8) = {1, 2}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              constant() = [2]
              +(x1, x2) = [1] x1 + [1] x2 + [4]
              *(x1, x2) = [1] x1 + [1] x2 + [2]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              minus(x1) = [1] x1 + [2]
              div(x1, x2) = [1] x1 + [1] x2 + [2]
              pow(x1, x2) = [1] x1 + [1] x2 + [4]
              ln(x1) = [1] x1 + [2]
              D^#(x1) = [2] x1 + [4]
              c_1() = [1]
              c_2(x1, x2) = [1] x1 + [1] x2 + [4]
              c_3(x1, x2) = [1] x1 + [1] x2 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [2]
              c_6(x1, x2) = [1] x1 + [1] x2 + [0]
              c_7(x1) = [1] x1 + [3]
              c_8(x1, x2) = [1] x1 + [1] x2 + [3]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputDer95 11

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 11

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^1))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))
          , D(minus(x)) -> minus(D(x))
          , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
          , D(ln(x)) -> div(D(x), x)
          , D(pow(x, y)) ->
            +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: D^#(t()) -> c_0()
            , 2: D^#(constant()) -> c_1()
            , 3: D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
            , 4: D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))
            , 5: D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
            , 6: D^#(minus(x)) -> c_5(D^#(x))
            , 7: D^#(div(x, y)) -> c_6(D^#(x), y, x, D^#(y), y)
            , 8: D^#(ln(x)) -> c_7(D^#(x), x)
            , 9: D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3,9,8,7,6,5,4}                                           [   YES(?,O(n^1))    ]
              |
              |->{1}                                                   [   YES(?,O(n^1))    ]
              |
              `->{2}                                                   [   YES(?,O(n^1))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {3,9,8,7,6,5,4}: YES(?,O(n^1))
           -----------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_2) = {1, 2},
               Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1},
               Uargs(c_6) = {1, 4}, Uargs(c_7) = {1}, Uargs(c_8) = {4, 8}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [0]
              *(x1, x2) = [1] x1 + [1] x2 + [0]
              -(x1, x2) = [1] x1 + [1] x2 + [0]
              minus(x1) = [1] x1 + [0]
              div(x1, x2) = [1] x1 + [1] x2 + [0]
              pow(x1, x2) = [1] x1 + [1] x2 + [0]
              2() = [0]
              ln(x1) = [1] x1 + [0]
              D^#(x1) = [3] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2, x3, x4, x5) = [1] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0]
              c_7(x1, x2) = [1] x1 + [0] x2 + [0]
              c_8(x1, x2, x3, x4, x5, x6, x7, x8) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0] x6 + [0] x7 + [1] x8 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
                , D^#(ln(x)) -> c_7(D^#(x), x)
                , D^#(div(x, y)) -> c_6(D^#(x), y, x, D^#(y), y)
                , D^#(minus(x)) -> c_5(D^#(x))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(minus) = {},
               Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2},
               Uargs(c_5) = {1}, Uargs(c_6) = {1, 4}, Uargs(c_7) = {1},
               Uargs(c_8) = {4, 8}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              +(x1, x2) = [1] x1 + [1] x2 + [2]
              *(x1, x2) = [1] x1 + [1] x2 + [4]
              -(x1, x2) = [1] x1 + [1] x2 + [1]
              minus(x1) = [1] x1 + [4]
              div(x1, x2) = [1] x1 + [1] x2 + [4]
              pow(x1, x2) = [1] x1 + [1] x2 + [4]
              ln(x1) = [1] x1 + [4]
              D^#(x1) = [2] x1 + [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [3]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [7]
              c_4(x1, x2) = [1] x1 + [1] x2 + [1]
              c_5(x1) = [1] x1 + [7]
              c_6(x1, x2, x3, x4, x5) = [1] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [7]
              c_7(x1, x2) = [1] x1 + [0] x2 + [7]
              c_8(x1, x2, x3, x4, x5, x6, x7, x8) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0] x6 + [0] x7 + [1] x8 + [7]
         
         * Path {3,9,8,7,6,5,4}->{1}: YES(?,O(n^1))
           ----------------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_2) = {1, 2},
               Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1},
               Uargs(c_6) = {1, 4}, Uargs(c_7) = {1}, Uargs(c_8) = {4, 8}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              minus(x1) = [0] x1 + [0]
              div(x1, x2) = [0] x1 + [0] x2 + [0]
              pow(x1, x2) = [0] x1 + [0] x2 + [0]
              2() = [0]
              ln(x1) = [0] x1 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2, x3, x4, x5) = [1] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0]
              c_7(x1, x2) = [1] x1 + [0] x2 + [0]
              c_8(x1, x2, x3, x4, x5, x6, x7, x8) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0] x6 + [0] x7 + [1] x8 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {D^#(t()) -> c_0()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
                , D^#(ln(x)) -> c_7(D^#(x), x)
                , D^#(div(x, y)) -> c_6(D^#(x), y, x, D^#(y), y)
                , D^#(minus(x)) -> c_5(D^#(x))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(minus) = {},
               Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2},
               Uargs(c_5) = {1}, Uargs(c_6) = {1, 4}, Uargs(c_7) = {1},
               Uargs(c_8) = {4, 8}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              t() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [2]
              *(x1, x2) = [1] x1 + [1] x2 + [2]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              minus(x1) = [1] x1 + [0]
              div(x1, x2) = [1] x1 + [1] x2 + [4]
              pow(x1, x2) = [1] x1 + [1] x2 + [2]
              ln(x1) = [1] x1 + [2]
              D^#(x1) = [2] x1 + [1]
              c_0() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [1]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [3]
              c_4(x1, x2) = [1] x1 + [1] x2 + [1]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2, x3, x4, x5) = [1] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [5]
              c_7(x1, x2) = [1] x1 + [0] x2 + [1]
              c_8(x1, x2, x3, x4, x5, x6, x7, x8) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0] x6 + [0] x7 + [1] x8 + [1]
         
         * Path {3,9,8,7,6,5,4}->{2}: YES(?,O(n^1))
           ----------------------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_2) = {1, 2},
               Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1},
               Uargs(c_6) = {1, 4}, Uargs(c_7) = {1}, Uargs(c_8) = {4, 8}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              D(x1) = [0] x1 + [0]
              t() = [0]
              1() = [0]
              constant() = [0]
              0() = [0]
              +(x1, x2) = [0] x1 + [0] x2 + [0]
              *(x1, x2) = [0] x1 + [0] x2 + [0]
              -(x1, x2) = [0] x1 + [0] x2 + [0]
              minus(x1) = [0] x1 + [0]
              div(x1, x2) = [0] x1 + [0] x2 + [0]
              pow(x1, x2) = [0] x1 + [0] x2 + [0]
              2() = [0]
              ln(x1) = [0] x1 + [0]
              D^#(x1) = [0] x1 + [0]
              c_0() = [0]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [0]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [0]
              c_4(x1, x2) = [1] x1 + [1] x2 + [0]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2, x3, x4, x5) = [1] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0]
              c_7(x1, x2) = [1] x1 + [0] x2 + [0]
              c_8(x1, x2, x3, x4, x5, x6, x7, x8) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0] x6 + [0] x7 + [1] x8 + [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 1'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {D^#(constant()) -> c_1()}
             Weak Rules:
               {  D^#(+(x, y)) -> c_2(D^#(x), D^#(y))
                , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
                , D^#(ln(x)) -> c_7(D^#(x), x)
                , D^#(div(x, y)) -> c_6(D^#(x), y, x, D^#(y), y)
                , D^#(minus(x)) -> c_5(D^#(x))
                , D^#(-(x, y)) -> c_4(D^#(x), D^#(y))
                , D^#(*(x, y)) -> c_3(y, D^#(x), x, D^#(y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {}, Uargs(minus) = {},
               Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
               Uargs(c_2) = {1, 2}, Uargs(c_3) = {2, 4}, Uargs(c_4) = {1, 2},
               Uargs(c_5) = {1}, Uargs(c_6) = {1, 4}, Uargs(c_7) = {1},
               Uargs(c_8) = {4, 8}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              constant() = [0]
              +(x1, x2) = [1] x1 + [1] x2 + [2]
              *(x1, x2) = [1] x1 + [1] x2 + [2]
              -(x1, x2) = [1] x1 + [1] x2 + [2]
              minus(x1) = [1] x1 + [0]
              div(x1, x2) = [1] x1 + [1] x2 + [4]
              pow(x1, x2) = [1] x1 + [1] x2 + [2]
              ln(x1) = [1] x1 + [2]
              D^#(x1) = [2] x1 + [1]
              c_1() = [0]
              c_2(x1, x2) = [1] x1 + [1] x2 + [1]
              c_3(x1, x2, x3, x4) = [0] x1 + [1] x2 + [0] x3 + [1] x4 + [3]
              c_4(x1, x2) = [1] x1 + [1] x2 + [1]
              c_5(x1) = [1] x1 + [0]
              c_6(x1, x2, x3, x4, x5) = [1] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [5]
              c_7(x1, x2) = [1] x1 + [0] x2 + [1]
              c_8(x1, x2, x3, x4, x5, x6, x7, x8) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [0] x5 + [0] x6 + [0] x7 + [1] x8 + [1]

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputDer95 11

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputDer95 11

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputDer95 11

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputDer95 11

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputDer95 11

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  'dp' proved the goal fastest:
  
  We have computed the following dependency pairs
  
  Strict Dependency Pairs:
    {  D^#(t()) -> c_1()
     , D^#(constant()) -> c_2()
     , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
     , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
     , D^#(minus(x)) -> c_6(D^#(x))
     , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
     , D^#(ln(x)) -> c_8(D^#(x), x)
     , D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))}
  
  We consider the following Problem:
  
    Strict DPs:
      {  D^#(t()) -> c_1()
       , D^#(constant()) -> c_2()
       , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
       , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
       , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
       , D^#(minus(x)) -> c_6(D^#(x))
       , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
       , D^#(ln(x)) -> c_8(D^#(x), x)
       , D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))}
    Strict Trs:
      {  D(t()) -> 1()
       , D(constant()) -> 0()
       , D(+(x, y)) -> +(D(x), D(y))
       , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
       , D(-(x, y)) -> -(D(x), D(y))
       , D(minus(x)) -> minus(D(x))
       , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
       , D(ln(x)) -> div(D(x), x)
       , D(pow(x, y)) ->
         +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
    StartTerms: basic terms
    Strategy: none
  
  Certificate: YES(?,O(n^1))
  
  Application of 'usablerules':
  -----------------------------
    No rule is usable.
    
    We consider the following Problem:
    
      Strict DPs:
        {  D^#(t()) -> c_1()
         , D^#(constant()) -> c_2()
         , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
         , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
         , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
         , D^#(minus(x)) -> c_6(D^#(x))
         , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
         , D^#(ln(x)) -> c_8(D^#(x), x)
         , D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))}
      StartTerms: basic terms
      Strategy: none
    
    Certificate: YES(?,O(n^1))
    
    Application of 'Fastest':
    -------------------------
      'removetails >>> ... >>> ... >>> ...' proved the goal fastest:
      
      We consider the the dependency-graph
      
        1: D^#(t()) -> c_1()
        
        2: D^#(constant()) -> c_2()
        
        3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        4: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        6: D^#(minus(x)) -> c_6(D^#(x))
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        7: D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        8: D^#(ln(x)) -> c_8(D^#(x), x)
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
        9: D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))
             --> D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y)): 9
             --> D^#(ln(x)) -> c_8(D^#(x), x): 8
             --> D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y): 7
             --> D^#(minus(x)) -> c_6(D^#(x)): 6
             --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
             --> D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y)): 4
             --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
             --> D^#(constant()) -> c_2(): 2
             --> D^#(t()) -> c_1(): 1
        
      
      together with the congruence-graph
      
        ->{3,9,8,7,6,5,4}
           |
           |->{1}                                                   Noncyclic, trivial, SCC
           |
           `->{2}                                                   Noncyclic, trivial, SCC
        
        
        Here rules are as follows:
        
          {  1: D^#(t()) -> c_1()
           , 2: D^#(constant()) -> c_2()
           , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
           , 4: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
           , 5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
           , 6: D^#(minus(x)) -> c_6(D^#(x))
           , 7: D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
           , 8: D^#(ln(x)) -> c_8(D^#(x), x)
           , 9: D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))}
      
      The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
      
        {  2: D^#(constant()) -> c_2()
         , 1: D^#(t()) -> c_1()}
      
      We consider the following Problem:
      
        Strict DPs:
          {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
           , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
           , D^#(minus(x)) -> c_6(D^#(x))
           , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
           , D^#(ln(x)) -> c_8(D^#(x), x)
           , D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))}
        StartTerms: basic terms
        Strategy: none
      
      Certificate: YES(?,O(n^1))
      
      Application of 'simpDPRHS >>> ...':
      -----------------------------------
        The right-hand sides of following rules could be simplified:
        
          {  D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
           , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
           , D^#(ln(x)) -> c_8(D^#(x), x)
           , D^#(pow(x, y)) -> c_9(y, x, y, D^#(x), x, y, x, D^#(y))}
        
        We consider the following Problem:
        
          Strict DPs:
            {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
             , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
             , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
             , D^#(minus(x)) -> c_4(D^#(x))
             , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
             , D^#(ln(x)) -> c_6(D^#(x))
             , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
          StartTerms: basic terms
          Strategy: none
        
        Certificate: YES(?,O(n^1))
        
        Application of 'usablerules':
        -----------------------------
          No rule is usable.
          
          We abort the transformation and continue with the subprocessor on the problem
          
          Strict DPs:
            {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
             , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
             , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
             , D^#(minus(x)) -> c_4(D^#(x))
             , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
             , D^#(ln(x)) -> c_6(D^#(x))
             , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
          StartTerms: basic terms
          Strategy: none
          
          1) The weightgap principle applies, where following rules are oriented strictly:
             
             Dependency Pairs: {D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
             
             Interpretation:
             ---------------
               The following argument positions are usable:
                 Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                 Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                 Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}, Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2},
                 Uargs(c_3) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1, 2},
                 Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
               We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
               Interpretation Functions:
                D(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                t() = [0]
                      [0]
                1() = [0]
                      [0]
                constant() = [0]
                             [0]
                0() = [0]
                      [0]
                +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                -(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                minus(x1) = [1 0] x1 + [0]
                            [0 0]      [0]
                div(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                pow(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 0]      [0]
                2() = [0]
                      [0]
                ln(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
                D^#(x1) = [2 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 1]      [0 1]      [3]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 1]      [0 1]      [3]
                c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 1]      [0 1]      [3]
                c_4(x1) = [1 0] x1 + [3]
                          [0 1]      [3]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 1]      [0 1]      [3]
                c_6(x1) = [1 0] x1 + [3]
                          [0 1]      [0]
                c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                              [0 1]      [0 1]      [0]
             
             The strictly oriented rules are moved into the weak component.
             
             We consider the following Problem:
             
               Strict DPs:
                 {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                  , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                  , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                  , D^#(minus(x)) -> c_4(D^#(x))
                  , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                  , D^#(ln(x)) -> c_6(D^#(x))}
               Weak DPs: {D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
               StartTerms: basic terms
               Strategy: none
             
             Certificate: YES(?,O(n^1))
             
             Application of 'removetails >>> ... >>> ... >>> ...':
             -----------------------------------------------------
               No dependency-pair could be removed
               
               We abort the transformation and continue with the subprocessor on the problem
               
               Strict DPs:
                 {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                  , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                  , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                  , D^#(minus(x)) -> c_4(D^#(x))
                  , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                  , D^#(ln(x)) -> c_6(D^#(x))}
               Weak DPs: {D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
               StartTerms: basic terms
               Strategy: none
               
               1) The weightgap principle applies, where following rules are oriented strictly:
                  
                  Dependency Pairs: {D^#(ln(x)) -> c_6(D^#(x))}
                  
                  Interpretation:
                  ---------------
                    The following argument positions are usable:
                      Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                      Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                      Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                      Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                      Uargs(c_9) = {}, Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2},
                      Uargs(c_3) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1, 2},
                      Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
                    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                    Interpretation Functions:
                     D(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                     t() = [0]
                           [0]
                     1() = [0]
                           [0]
                     constant() = [0]
                                  [0]
                     0() = [0]
                           [0]
                     +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                     *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                     -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                     minus(x1) = [0 0] x1 + [0]
                                 [0 1]      [0]
                     div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 1]      [0 1]      [0]
                     pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 1]      [0 1]      [0]
                     2() = [0]
                           [0]
                     ln(x1) = [0 0] x1 + [0]
                              [0 1]      [2]
                     D^#(x1) = [0 1] x1 + [0]
                               [0 0]      [0]
                     c_1() = [0]
                             [0]
                     c_2() = [0]
                             [0]
                     c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                     c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                     c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                     c_6(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                     c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                     c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                     c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                           [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                     c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 1]      [0 1]      [3]
                     c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 1]      [0 1]      [3]
                     c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 1]      [0 1]      [2]
                     c_4(x1) = [1 0] x1 + [3]
                               [0 1]      [3]
                     c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 1]      [0 1]      [2]
                     c_6(x1) = [1 0] x1 + [1]
                               [0 1]      [0]
                     c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                   [0 1]      [0 1]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict DPs:
                      {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                       , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                       , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                       , D^#(minus(x)) -> c_4(D^#(x))
                       , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))}
                    Weak DPs:
                      {  D^#(ln(x)) -> c_6(D^#(x))
                       , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                    StartTerms: basic terms
                    Strategy: none
                  
                  Certificate: YES(?,O(n^1))
                  
                  Application of 'removetails >>> ... >>> ... >>> ...':
                  -----------------------------------------------------
                    No dependency-pair could be removed
                    
                    We abort the transformation and continue with the subprocessor on the problem
                    
                    Strict DPs:
                      {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                       , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                       , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                       , D^#(minus(x)) -> c_4(D^#(x))
                       , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))}
                    Weak DPs:
                      {  D^#(ln(x)) -> c_6(D^#(x))
                       , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                    StartTerms: basic terms
                    Strategy: none
                    
                    1) The weightgap principle applies, where following rules are oriented strictly:
                       
                       Dependency Pairs: {D^#(div(x, y)) -> c_5(D^#(x), D^#(y))}
                       
                       Interpretation:
                       ---------------
                         The following argument positions are usable:
                           Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                           Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                           Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                           Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                           Uargs(c_9) = {}, Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2},
                           Uargs(c_3) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1, 2},
                           Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
                         We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                         Interpretation Functions:
                          D(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                          t() = [0]
                                [0]
                          1() = [0]
                                [0]
                          constant() = [0]
                                       [0]
                          0() = [0]
                                [0]
                          +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 1]      [0]
                          *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 1]      [0]
                          -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 1]      [0]
                          minus(x1) = [0 0] x1 + [0]
                                      [0 1]      [0]
                          div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 1]      [0 1]      [2]
                          pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 1]      [0 1]      [0]
                          2() = [0]
                                [0]
                          ln(x1) = [0 0] x1 + [0]
                                   [0 1]      [0]
                          D^#(x1) = [0 2] x1 + [0]
                                    [0 0]      [0]
                          c_1() = [0]
                                  [0]
                          c_2() = [0]
                                  [0]
                          c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                          c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0]
                          c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                          c_6(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                          c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                    [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                          c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                          c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                          c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                        [0 1]      [0 1]      [3]
                          c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                        [0 1]      [0 1]      [3]
                          c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                        [0 1]      [0 1]      [3]
                          c_4(x1) = [1 0] x1 + [3]
                                    [0 1]      [0]
                          c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                        [0 1]      [0 1]      [0]
                          c_6(x1) = [1 0] x1 + [0]
                                    [0 1]      [0]
                          c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                        [0 1]      [0 1]      [0]
                       
                       The strictly oriented rules are moved into the weak component.
                       
                       We consider the following Problem:
                       
                         Strict DPs:
                           {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                            , D^#(minus(x)) -> c_4(D^#(x))}
                         Weak DPs:
                           {  D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                            , D^#(ln(x)) -> c_6(D^#(x))
                            , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: YES(?,O(n^1))
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         No dependency-pair could be removed
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict DPs:
                           {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                            , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                            , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                            , D^#(minus(x)) -> c_4(D^#(x))}
                         Weak DPs:
                           {  D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                            , D^#(ln(x)) -> c_6(D^#(x))
                            , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            Dependency Pairs: {D^#(minus(x)) -> c_4(D^#(x))}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                                Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                                Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                                Uargs(c_5) = {}, Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                                Uargs(c_9) = {}, Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2},
                                Uargs(c_3) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1, 2},
                                Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               D(x1) = [0 0] x1 + [0]
                                       [0 0]      [0]
                               t() = [0]
                                     [0]
                               1() = [0]
                                     [0]
                               constant() = [0]
                                            [0]
                               0() = [0]
                                     [0]
                               +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 1]      [0 1]      [0]
                               *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 1]      [0 1]      [0]
                               -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 1]      [0 1]      [0]
                               minus(x1) = [0 0] x1 + [0]
                                           [0 1]      [2]
                               div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                             [0 1]      [0 1]      [0]
                               pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                             [0 1]      [0 1]      [0]
                               2() = [0]
                                     [0]
                               ln(x1) = [0 0] x1 + [0]
                                        [0 1]      [0]
                               D^#(x1) = [0 2] x1 + [0]
                                         [0 0]      [0]
                               c_1() = [0]
                                       [0]
                               c_2() = [0]
                                       [0]
                               c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                             [0 0]      [0 0]      [0]
                               c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                               c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                             [0 0]      [0 0]      [0]
                               c_6(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                         [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                               c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                             [0 0]      [0 0]      [0]
                               c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                                     [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                               c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                             [0 1]      [0 1]      [3]
                               c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                             [0 1]      [0 1]      [2]
                               c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                             [0 1]      [0 1]      [3]
                               c_4(x1) = [1 0] x1 + [3]
                                         [0 1]      [0]
                               c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                             [0 1]      [0 1]      [0]
                               c_6(x1) = [1 0] x1 + [0]
                                         [0 1]      [0]
                               c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                             [0 1]      [0 1]      [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict DPs:
                                {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                 , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                 , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                              Weak DPs:
                                {  D^#(minus(x)) -> c_4(D^#(x))
                                 , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                 , D^#(ln(x)) -> c_6(D^#(x))
                                 , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: YES(?,O(n^1))
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              No dependency-pair could be removed
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              Strict DPs:
                                {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                 , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                 , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                              Weak DPs:
                                {  D^#(minus(x)) -> c_4(D^#(x))
                                 , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                 , D^#(ln(x)) -> c_6(D^#(x))
                                 , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) The weightgap principle applies, where following rules are oriented strictly:
                                 
                                 Dependency Pairs: {D^#(-(x, y)) -> c_3(D^#(x), D^#(y))}
                                 
                                 Interpretation:
                                 ---------------
                                   The following argument positions are usable:
                                     Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                                     Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                                     Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {},
                                     Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {},
                                     Uargs(c_7) = {}, Uargs(c_8) = {}, Uargs(c_9) = {},
                                     Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
                                     Uargs(c_4) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                                     Uargs(c_7) = {1, 2}
                                   We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                   Interpretation Functions:
                                    D(x1) = [0 0] x1 + [0]
                                            [0 0]      [0]
                                    t() = [0]
                                          [0]
                                    1() = [0]
                                          [0]
                                    constant() = [0]
                                                 [0]
                                    0() = [0]
                                          [0]
                                    +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 1]      [0 1]      [0]
                                    *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 1]      [0 1]      [0]
                                    -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 1]      [0 1]      [2]
                                    minus(x1) = [0 0] x1 + [0]
                                                [0 1]      [0]
                                    div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                  [0 1]      [0 1]      [0]
                                    pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                  [0 1]      [0 1]      [0]
                                    2() = [0]
                                          [0]
                                    ln(x1) = [0 0] x1 + [0]
                                             [0 1]      [0]
                                    D^#(x1) = [0 1] x1 + [0]
                                              [0 0]      [0]
                                    c_1() = [0]
                                            [0]
                                    c_2() = [0]
                                            [0]
                                    c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                  [0 0]      [0 0]      [0]
                                    c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                    c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                  [0 0]      [0 0]      [0]
                                    c_6(x1) = [0 0] x1 + [0]
                                              [0 0]      [0]
                                    c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                    c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                  [0 0]      [0 0]      [0]
                                    c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                                          [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                    c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                  [0 1]      [0 1]      [3]
                                    c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                  [0 1]      [0 1]      [3]
                                    c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                  [0 1]      [0 1]      [0]
                                    c_4(x1) = [1 0] x1 + [0]
                                              [0 1]      [0]
                                    c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                  [0 1]      [0 1]      [0]
                                    c_6(x1) = [1 0] x1 + [0]
                                              [0 1]      [0]
                                    c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                  [0 1]      [0 1]      [0]
                                 
                                 The strictly oriented rules are moved into the weak component.
                                 
                                 We consider the following Problem:
                                 
                                   Strict DPs:
                                     {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                      , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
                                   Weak DPs:
                                     {  D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                      , D^#(minus(x)) -> c_4(D^#(x))
                                      , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                      , D^#(ln(x)) -> c_6(D^#(x))
                                      , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                                   StartTerms: basic terms
                                   Strategy: none
                                 
                                 Certificate: YES(?,O(n^1))
                                 
                                 Application of 'removetails >>> ... >>> ... >>> ...':
                                 -----------------------------------------------------
                                   No dependency-pair could be removed
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Strict DPs:
                                     {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                      , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
                                   Weak DPs:
                                     {  D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                      , D^#(minus(x)) -> c_4(D^#(x))
                                      , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                      , D^#(ln(x)) -> c_6(D^#(x))
                                      , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) The weightgap principle applies, where following rules are oriented strictly:
                                      
                                      Dependency Pairs: {D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
                                      
                                      Interpretation:
                                      ---------------
                                        The following argument positions are usable:
                                          Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {},
                                          Uargs(-) = {}, Uargs(minus) = {}, Uargs(div) = {},
                                          Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
                                          Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                                          Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                                          Uargs(c_9) = {}, Uargs(c_1) = {1, 2}, Uargs(c_2) = {1, 2},
                                          Uargs(c_3) = {1, 2}, Uargs(c_4) = {1},
                                          Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
                                        We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                        Interpretation Functions:
                                         D(x1) = [0 0] x1 + [0]
                                                 [0 0]      [0]
                                         t() = [0]
                                               [0]
                                         1() = [0]
                                               [0]
                                         constant() = [0]
                                                      [0]
                                         0() = [0]
                                               [0]
                                         +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                     [0 1]      [0 1]      [0]
                                         *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                     [0 1]      [0 1]      [2]
                                         -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                     [0 1]      [0 1]      [3]
                                         minus(x1) = [0 0] x1 + [0]
                                                     [0 1]      [0]
                                         div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                       [0 1]      [0 1]      [2]
                                         pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                       [0 1]      [0 1]      [2]
                                         2() = [0]
                                               [0]
                                         ln(x1) = [0 0] x1 + [0]
                                                  [0 1]      [0]
                                         D^#(x1) = [0 2] x1 + [1]
                                                   [0 3]      [0]
                                         c_1() = [0]
                                                 [0]
                                         c_2() = [0]
                                                 [0]
                                         c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                       [0 0]      [0 0]      [0]
                                         c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                               [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                         c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                       [0 0]      [0 0]      [0]
                                         c_6(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                         c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                                   [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                         c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                       [0 0]      [0 0]      [0]
                                         c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                         c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 1]      [0 1]      [3]
                                         c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                       [0 1]      [0 1]      [2]
                                         c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 1]      [0 1]      [3]
                                         c_4(x1) = [1 0] x1 + [0]
                                                   [0 1]      [0]
                                         c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 1]      [0 1]      [2]
                                         c_6(x1) = [1 0] x1 + [0]
                                                   [0 1]      [0]
                                         c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 1]      [0 1]      [3]
                                      
                                      The strictly oriented rules are moved into the weak component.
                                      
                                      We consider the following Problem:
                                      
                                        Strict DPs: {D^#(+(x, y)) -> c_1(D^#(x), D^#(y))}
                                        Weak DPs:
                                          {  D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                           , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                           , D^#(minus(x)) -> c_4(D^#(x))
                                           , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                           , D^#(ln(x)) -> c_6(D^#(x))
                                           , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                                        StartTerms: basic terms
                                        Strategy: none
                                      
                                      Certificate: YES(?,O(n^1))
                                      
                                      Application of 'removetails >>> ... >>> ... >>> ...':
                                      -----------------------------------------------------
                                        No dependency-pair could be removed
                                        
                                        We abort the transformation and continue with the subprocessor on the problem
                                        
                                        Strict DPs: {D^#(+(x, y)) -> c_1(D^#(x), D^#(y))}
                                        Weak DPs:
                                          {  D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                           , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                           , D^#(minus(x)) -> c_4(D^#(x))
                                           , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                           , D^#(ln(x)) -> c_6(D^#(x))
                                           , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        1) The weightgap principle applies, where following rules are oriented strictly:
                                           
                                           Dependency Pairs: {D^#(+(x, y)) -> c_1(D^#(x), D^#(y))}
                                           
                                           Interpretation:
                                           ---------------
                                             The following argument positions are usable:
                                               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {},
                                               Uargs(-) = {}, Uargs(minus) = {}, Uargs(div) = {},
                                               Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
                                               Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {},
                                               Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                                               Uargs(c_9) = {}, Uargs(c_1) = {1, 2},
                                               Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
                                               Uargs(c_4) = {1}, Uargs(c_5) = {1, 2},
                                               Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
                                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                             Interpretation Functions:
                                              D(x1) = [0 0] x1 + [0]
                                                      [0 0]      [0]
                                              t() = [0]
                                                    [0]
                                              1() = [0]
                                                    [0]
                                              constant() = [0]
                                                           [0]
                                              0() = [0]
                                                    [0]
                                              +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                          [0 1]      [0 1]      [2]
                                              *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                          [0 1]      [0 1]      [0]
                                              -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                          [0 1]      [0 1]      [0]
                                              minus(x1) = [0 0] x1 + [0]
                                                          [0 1]      [0]
                                              div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                            [0 1]      [0 1]      [0]
                                              pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                            [0 1]      [0 1]      [0]
                                              2() = [0]
                                                    [0]
                                              ln(x1) = [0 0] x1 + [0]
                                                       [0 1]      [0]
                                              D^#(x1) = [0 1] x1 + [0]
                                                        [0 0]      [0]
                                              c_1() = [0]
                                                      [0]
                                              c_2() = [0]
                                                      [0]
                                              c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                            [0 0]      [0 0]      [0]
                                              c_4(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                                    [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                              c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                            [0 0]      [0 0]      [0]
                                              c_6(x1) = [0 0] x1 + [0]
                                                        [0 0]      [0]
                                              c_7(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                                        [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                              c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                            [0 0]      [0 0]      [0]
                                              c_9(x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0 0] x7 + [0 0] x8 + [0]
                                                                                    [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                              c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                            [0 1]      [0 1]      [0]
                                              c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                            [0 1]      [0 1]      [0]
                                              c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                            [0 1]      [0 1]      [0]
                                              c_4(x1) = [1 0] x1 + [0]
                                                        [0 1]      [0]
                                              c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                            [0 1]      [0 1]      [0]
                                              c_6(x1) = [1 0] x1 + [0]
                                                        [0 1]      [0]
                                              c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                            [0 1]      [0 1]      [0]
                                           
                                           The strictly oriented rules are moved into the weak component.
                                           
                                           We consider the following Problem:
                                           
                                             Weak DPs:
                                               {  D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                                , D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                                , D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                                , D^#(minus(x)) -> c_4(D^#(x))
                                                , D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                                , D^#(ln(x)) -> c_6(D^#(x))
                                                , D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                                             StartTerms: basic terms
                                             Strategy: none
                                           
                                           Certificate: YES(O(1),O(1))
                                           
                                           Application of 'removetails >>> ... >>> ... >>> ...':
                                           -----------------------------------------------------
                                             We consider the the dependency-graph
                                             
                                               1: D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                               2: D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                               3: D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                               4: D^#(minus(x)) -> c_4(D^#(x))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                               5: D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                               6: D^#(ln(x)) -> c_6(D^#(x))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                               7: D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))
                                                    --> D^#(pow(x, y)) -> c_7(D^#(x), D^#(y)): 7
                                                    --> D^#(ln(x)) -> c_6(D^#(x)): 6
                                                    --> D^#(div(x, y)) -> c_5(D^#(x), D^#(y)): 5
                                                    --> D^#(minus(x)) -> c_4(D^#(x)): 4
                                                    --> D^#(-(x, y)) -> c_3(D^#(x), D^#(y)): 3
                                                    --> D^#(*(x, y)) -> c_2(D^#(x), D^#(y)): 2
                                                    --> D^#(+(x, y)) -> c_1(D^#(x), D^#(y)): 1
                                               
                                             
                                             together with the congruence-graph
                                             
                                               ->{1,7,6,5,4,3,2}                                           Weak SCC
                                               
                                               
                                               Here rules are as follows:
                                               
                                                 {  1: D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                                  , 2: D^#(*(x, y)) -> c_2(D^#(x), D^#(y))
                                                  , 3: D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                                  , 4: D^#(minus(x)) -> c_4(D^#(x))
                                                  , 5: D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                                  , 6: D^#(ln(x)) -> c_6(D^#(x))
                                                  , 7: D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))}
                                             
                                             The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                             
                                               {  1: D^#(+(x, y)) -> c_1(D^#(x), D^#(y))
                                                , 7: D^#(pow(x, y)) -> c_7(D^#(x), D^#(y))
                                                , 6: D^#(ln(x)) -> c_6(D^#(x))
                                                , 5: D^#(div(x, y)) -> c_5(D^#(x), D^#(y))
                                                , 4: D^#(minus(x)) -> c_4(D^#(x))
                                                , 3: D^#(-(x, y)) -> c_3(D^#(x), D^#(y))
                                                , 2: D^#(*(x, y)) -> c_2(D^#(x), D^#(y))}
                                             
                                             We consider the following Problem:
                                             
                                               StartTerms: basic terms
                                               Strategy: none
                                             
                                             Certificate: YES(O(1),O(1))
                                             
                                             Application of 'simpDPRHS >>> ...':
                                             -----------------------------------
                                               No rule was simplified
                                               
                                               We apply the transformation 'usablerules' on the resulting sub-problems:
                                               Sub-problem 1:
                                               --------------
                                                 We consider the problem
                                                 
                                                 StartTerms: basic terms
                                                 Strategy: none
                                                 
                                                 The input problem is not a DP-problem.
                                               
                                               We abort the transformation and continue with the subprocessor on the problem
                                               
                                               StartTerms: basic terms
                                               Strategy: none
                                               
                                               1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                  
                                                    All strict components are empty, nothing to further orient
                                                  
                                                  We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                  
                                                  StartTerms: basic terms
                                                  Strategy: none
                                                  
                                                    We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                    
                                                      All strict components are empty, nothing to further orient
                                                    
                                                    We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                    
                                                    StartTerms: basic terms
                                                    Strategy: none
                                                    
                                                      All strict components are empty, nothing to further orient
                                                  
                                                  We abort the transformation and continue with the subprocessor on the problem
                                                  
                                                  StartTerms: basic terms
                                                  Strategy: none
                                                  
                                                  1) No dependency-pair could be removed
                                                     
                                                     We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                                     Sub-problem 1:
                                                     --------------
                                                       We consider the problem
                                                       
                                                       StartTerms: basic terms
                                                       Strategy: none
                                                       
                                                       We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                       
                                                         All strict components are empty, nothing to further orient
                                                       
                                                       We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                       
                                                       StartTerms: basic terms
                                                       Strategy: none
                                                       
                                                         We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                         
                                                           All strict components are empty, nothing to further orient
                                                         
                                                         We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                         
                                                         StartTerms: basic terms
                                                         Strategy: none
                                                         
                                                           All strict components are empty, nothing to further orient
                                                     
                                                     We abort the transformation and continue with the subprocessor on the problem
                                                     
                                                     StartTerms: basic terms
                                                     Strategy: none
                                                     
                                                     1) 'Sequentially' proved the goal fastest:
                                                        
                                                        'empty' succeeded:
                                                        
                                                        Empty rules are trivially bounded
                                                     
                                                  
                                               
                                        
                                   
                              
                         
                    
               
          

Hurray, we answered YES(?,O(n^1))

Tool tup3irc

Execution Time16.166756ms
Answer
YES(?,O(n^1))
InputDer95 11

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  D(t()) -> 1()
     , D(constant()) -> 0()
     , D(+(x, y)) -> +(D(x), D(y))
     , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
     , D(-(x, y)) -> -(D(x), D(y))
     , D(minus(x)) -> minus(D(x))
     , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
     , D(ln(x)) -> div(D(x), x)
     , D(pow(x, y)) ->
       +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'dp' proved the goal fastest:
     
     We have computed the following dependency pairs
     
     Strict Dependency Pairs:
       {  D^#(t()) -> c_1()
        , D^#(constant()) -> c_2()
        , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
        , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
        , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
        , D^#(minus(x)) -> c_6(D^#(x))
        , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
        , D^#(ln(x)) -> c_8(D^#(x))
        , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
     
     We consider the following Problem:
     
       Strict DPs:
         {  D^#(t()) -> c_1()
          , D^#(constant()) -> c_2()
          , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
          , D^#(minus(x)) -> c_6(D^#(x))
          , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
          , D^#(ln(x)) -> c_8(D^#(x))
          , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
       Weak Trs:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))
          , D(minus(x)) -> minus(D(x))
          , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
          , D(ln(x)) -> div(D(x), x)
          , D(pow(x, y)) ->
            +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
       StartTerms: basic terms
       Strategy: innermost
     
     Certificate: YES(?,O(n^1))
     
     Application of 'Fastest':
     -------------------------
       'compose (statically using 'split all congruence from CWD except leafs', multiplication)' proved the goal fastest:
       
       Compose is inapplicable since some weak rule is size increasing
       
       We abort the transformation and continue with the subprocessor on the problem
       
       Strict DPs:
         {  D^#(t()) -> c_1()
          , D^#(constant()) -> c_2()
          , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
          , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
          , D^#(minus(x)) -> c_6(D^#(x))
          , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
          , D^#(ln(x)) -> c_8(D^#(x))
          , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
       Weak Trs:
         {  D(t()) -> 1()
          , D(constant()) -> 0()
          , D(+(x, y)) -> +(D(x), D(y))
          , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
          , D(-(x, y)) -> -(D(x), D(y))
          , D(minus(x)) -> minus(D(x))
          , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
          , D(ln(x)) -> div(D(x), x)
          , D(pow(x, y)) ->
            +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
       StartTerms: basic terms
       Strategy: innermost
       
       1) We consider the the dependency-graph
          
            1: D^#(t()) -> c_1()
            
            2: D^#(constant()) -> c_2()
            
            3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            4: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            6: D^#(minus(x)) -> c_6(D^#(x))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            7: D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            8: D^#(ln(x)) -> c_8(D^#(x))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
            9: D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))
                 --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 9
                 --> D^#(ln(x)) -> c_8(D^#(x)): 8
                 --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 7
                 --> D^#(minus(x)) -> c_6(D^#(x)): 6
                 --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 5
                 --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 4
                 --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 3
                 --> D^#(constant()) -> c_2(): 2
                 --> D^#(t()) -> c_1(): 1
            
          
          together with the congruence-graph
          
            ->{3,9,8,7,6,5,4}
               |
               |->{1}                                                   Noncyclic, trivial, SCC
               |
               `->{2}                                                   Noncyclic, trivial, SCC
            
            
            Here rules are as follows:
            
              {  1: D^#(t()) -> c_1()
               , 2: D^#(constant()) -> c_2()
               , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , 4: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , 5: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
               , 6: D^#(minus(x)) -> c_6(D^#(x))
               , 7: D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
               , 8: D^#(ln(x)) -> c_8(D^#(x))
               , 9: D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
          
          The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
          
            {  2: D^#(constant()) -> c_2()
             , 1: D^#(t()) -> c_1()}
          
          We consider the following Problem:
          
            Strict DPs:
              {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
               , D^#(minus(x)) -> c_6(D^#(x))
               , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
               , D^#(ln(x)) -> c_8(D^#(x))
               , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
            Weak Trs:
              {  D(t()) -> 1()
               , D(constant()) -> 0()
               , D(+(x, y)) -> +(D(x), D(y))
               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
               , D(-(x, y)) -> -(D(x), D(y))
               , D(minus(x)) -> minus(D(x))
               , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
               , D(ln(x)) -> div(D(x), x)
               , D(pow(x, y)) ->
                 +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Application of 'simpDPRHS >>> ...':
          -----------------------------------
            No rule was simplified
            
            We abort the transformation and continue with the subprocessor on the problem
            
            Strict DPs:
              {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
               , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
               , D^#(minus(x)) -> c_6(D^#(x))
               , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
               , D^#(ln(x)) -> c_8(D^#(x))
               , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
            Weak Trs:
              {  D(t()) -> 1()
               , D(constant()) -> 0()
               , D(+(x, y)) -> +(D(x), D(y))
               , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
               , D(-(x, y)) -> -(D(x), D(y))
               , D(minus(x)) -> minus(D(x))
               , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
               , D(ln(x)) -> div(D(x), x)
               , D(pow(x, y)) ->
                 +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))}
            StartTerms: basic terms
            Strategy: innermost
            
            1) No rule is usable.
               
               We consider the following Problem:
               
                 Strict DPs:
                   {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                    , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                    , D^#(minus(x)) -> c_6(D^#(x))
                    , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                    , D^#(ln(x)) -> c_8(D^#(x))
                    , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                 StartTerms: basic terms
                 Strategy: innermost
               
               Certificate: YES(?,O(n^1))
               
               Application of 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...':
               --------------------------------------------------------------------------------
                 The weightgap principle applies, where following rules are oriented strictly:
                 
                 Dependency Pairs: {D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                 
                 Interpretation:
                 ---------------
                   The following argument positions are usable:
                     Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                     Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                     Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                     Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                     Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}
                   We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                   Interpretation Functions:
                    D(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                    t() = [0]
                          [0]
                    1() = [0]
                          [0]
                    constant() = [0]
                                 [0]
                    0() = [0]
                          [0]
                    +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                    *(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                    -(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                    minus(x1) = [1 0] x1 + [0]
                                [0 0]      [0]
                    div(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                    pow(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                  [0 0]      [0 0]      [0]
                    2() = [0]
                          [0]
                    ln(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                    D^#(x1) = [2 0] x1 + [0]
                              [0 0]      [0]
                    c_1() = [0]
                            [0]
                    c_2() = [0]
                            [0]
                    c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                  [0 1]      [0 1]      [3]
                    c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                  [0 1]      [0 1]      [3]
                    c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                  [0 1]      [0 1]      [3]
                    c_6(x1) = [1 0] x1 + [3]
                              [0 1]      [3]
                    c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                  [0 1]      [0 1]      [3]
                    c_8(x1) = [1 0] x1 + [3]
                              [0 1]      [0]
                    c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                  [0 1]      [0 1]      [0]
                 
                 The strictly oriented rules are moved into the weak component.
                 
                 We consider the following Problem:
                 
                   Strict DPs:
                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                      , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                      , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                      , D^#(minus(x)) -> c_6(D^#(x))
                      , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                      , D^#(ln(x)) -> c_8(D^#(x))}
                   Weak DPs: {D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                   StartTerms: basic terms
                   Strategy: innermost
                 
                 Certificate: YES(?,O(n^1))
                 
                 Application of 'removetails >>> ... >>> ... >>> ...':
                 -----------------------------------------------------
                   No dependency-pair could be removed
                   
                   We abort the transformation and continue with the subprocessor on the problem
                   
                   Strict DPs:
                     {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                      , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                      , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                      , D^#(minus(x)) -> c_6(D^#(x))
                      , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                      , D^#(ln(x)) -> c_8(D^#(x))}
                   Weak DPs: {D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                   StartTerms: basic terms
                   Strategy: innermost
                   
                   1) The weightgap principle applies, where following rules are oriented strictly:
                      
                      Dependency Pairs: {D^#(ln(x)) -> c_8(D^#(x))}
                      
                      Interpretation:
                      ---------------
                        The following argument positions are usable:
                          Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                          Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                          Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                          Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                          Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}
                        We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                        Interpretation Functions:
                         D(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                         t() = [0]
                               [0]
                         1() = [0]
                               [0]
                         constant() = [0]
                                      [0]
                         0() = [0]
                               [0]
                         +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [0]
                         *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [0]
                         -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [0]
                         minus(x1) = [0 0] x1 + [0]
                                     [0 1]      [0]
                         div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 1]      [0 1]      [0]
                         pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 1]      [0 1]      [0]
                         2() = [0]
                               [0]
                         ln(x1) = [0 0] x1 + [0]
                                  [0 1]      [2]
                         D^#(x1) = [0 1] x1 + [0]
                                   [0 0]      [0]
                         c_1() = [0]
                                 [0]
                         c_2() = [0]
                                 [0]
                         c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 1]      [0 1]      [3]
                         c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 1]      [0 1]      [3]
                         c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 1]      [0 1]      [2]
                         c_6(x1) = [1 0] x1 + [3]
                                   [0 1]      [3]
                         c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 1]      [0 1]      [2]
                         c_8(x1) = [1 0] x1 + [1]
                                   [0 1]      [0]
                         c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                       [0 1]      [0 1]      [0]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Strict DPs:
                          {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                           , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                           , D^#(minus(x)) -> c_6(D^#(x))
                           , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))}
                        Weak DPs:
                          {  D^#(ln(x)) -> c_8(D^#(x))
                           , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Application of 'removetails >>> ... >>> ... >>> ...':
                      -----------------------------------------------------
                        No dependency-pair could be removed
                        
                        We abort the transformation and continue with the subprocessor on the problem
                        
                        Strict DPs:
                          {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                           , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                           , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                           , D^#(minus(x)) -> c_6(D^#(x))
                           , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))}
                        Weak DPs:
                          {  D^#(ln(x)) -> c_8(D^#(x))
                           , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                        StartTerms: basic terms
                        Strategy: innermost
                        
                        1) The weightgap principle applies, where following rules are oriented strictly:
                           
                           Dependency Pairs: {D^#(div(x, y)) -> c_7(D^#(x), D^#(y))}
                           
                           Interpretation:
                           ---------------
                             The following argument positions are usable:
                               Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                               Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                               Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                               Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                               Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}
                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                             Interpretation Functions:
                              D(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                              t() = [0]
                                    [0]
                              1() = [0]
                                    [0]
                              constant() = [0]
                                           [0]
                              0() = [0]
                                    [0]
                              +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 1]      [0]
                              *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 1]      [0]
                              -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 1]      [0]
                              minus(x1) = [0 0] x1 + [0]
                                          [0 1]      [0]
                              div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 1]      [0 1]      [2]
                              pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 1]      [0 1]      [0]
                              2() = [0]
                                    [0]
                              ln(x1) = [0 0] x1 + [0]
                                       [0 1]      [0]
                              D^#(x1) = [0 2] x1 + [0]
                                        [0 0]      [0]
                              c_1() = [0]
                                      [0]
                              c_2() = [0]
                                      [0]
                              c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                            [0 1]      [0 1]      [3]
                              c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                            [0 1]      [0 1]      [3]
                              c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                            [0 1]      [0 1]      [3]
                              c_6(x1) = [1 0] x1 + [3]
                                        [0 1]      [0]
                              c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                            [0 1]      [0 1]      [0]
                              c_8(x1) = [1 0] x1 + [0]
                                        [0 1]      [0]
                              c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                            [0 1]      [0 1]      [0]
                           
                           The strictly oriented rules are moved into the weak component.
                           
                           We consider the following Problem:
                           
                             Strict DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                , D^#(minus(x)) -> c_6(D^#(x))}
                             Weak DPs:
                               {  D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                , D^#(ln(x)) -> c_8(D^#(x))
                                , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                             StartTerms: basic terms
                             Strategy: innermost
                           
                           Certificate: YES(?,O(n^1))
                           
                           Application of 'removetails >>> ... >>> ... >>> ...':
                           -----------------------------------------------------
                             No dependency-pair could be removed
                             
                             We abort the transformation and continue with the subprocessor on the problem
                             
                             Strict DPs:
                               {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                , D^#(minus(x)) -> c_6(D^#(x))}
                             Weak DPs:
                               {  D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                , D^#(ln(x)) -> c_8(D^#(x))
                                , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                             StartTerms: basic terms
                             Strategy: innermost
                             
                             1) The weightgap principle applies, where following rules are oriented strictly:
                                
                                Dependency Pairs: {D^#(minus(x)) -> c_6(D^#(x))}
                                
                                Interpretation:
                                ---------------
                                  The following argument positions are usable:
                                    Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                                    Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                                    Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                    Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                                    Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}
                                  We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                  Interpretation Functions:
                                   D(x1) = [0 0] x1 + [0]
                                           [0 0]      [0]
                                   t() = [0]
                                         [0]
                                   1() = [0]
                                         [0]
                                   constant() = [0]
                                                [0]
                                   0() = [0]
                                         [0]
                                   +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                               [0 1]      [0 1]      [0]
                                   *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                               [0 1]      [0 1]      [0]
                                   -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                               [0 1]      [0 1]      [0]
                                   minus(x1) = [0 0] x1 + [0]
                                               [0 1]      [2]
                                   div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                 [0 1]      [0 1]      [0]
                                   pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                 [0 1]      [0 1]      [0]
                                   2() = [0]
                                         [0]
                                   ln(x1) = [0 0] x1 + [0]
                                            [0 1]      [0]
                                   D^#(x1) = [0 2] x1 + [0]
                                             [0 0]      [0]
                                   c_1() = [0]
                                           [0]
                                   c_2() = [0]
                                           [0]
                                   c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                 [0 1]      [0 1]      [3]
                                   c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [2]
                                   c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                 [0 1]      [0 1]      [3]
                                   c_6(x1) = [1 0] x1 + [3]
                                             [0 1]      [0]
                                   c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                 [0 1]      [0 1]      [0]
                                   c_8(x1) = [1 0] x1 + [0]
                                             [0 1]      [0]
                                   c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                 [0 1]      [0 1]      [0]
                                
                                The strictly oriented rules are moved into the weak component.
                                
                                We consider the following Problem:
                                
                                  Strict DPs:
                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                     , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                  Weak DPs:
                                    {  D^#(minus(x)) -> c_6(D^#(x))
                                     , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                     , D^#(ln(x)) -> c_8(D^#(x))
                                     , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(?,O(n^1))
                                
                                Application of 'removetails >>> ... >>> ... >>> ...':
                                -----------------------------------------------------
                                  No dependency-pair could be removed
                                  
                                  We abort the transformation and continue with the subprocessor on the problem
                                  
                                  Strict DPs:
                                    {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                     , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                     , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                  Weak DPs:
                                    {  D^#(minus(x)) -> c_6(D^#(x))
                                     , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                     , D^#(ln(x)) -> c_8(D^#(x))
                                     , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                  
                                  1) The weightgap principle applies, where following rules are oriented strictly:
                                     
                                     Dependency Pairs: {D^#(-(x, y)) -> c_5(D^#(x), D^#(y))}
                                     
                                     Interpretation:
                                     ---------------
                                       The following argument positions are usable:
                                         Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {}, Uargs(-) = {},
                                         Uargs(minus) = {}, Uargs(div) = {}, Uargs(pow) = {},
                                         Uargs(ln) = {}, Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                         Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                                         Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}
                                       We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                       Interpretation Functions:
                                        D(x1) = [0 0] x1 + [0]
                                                [0 0]      [0]
                                        t() = [0]
                                              [0]
                                        1() = [0]
                                              [0]
                                        constant() = [0]
                                                     [0]
                                        0() = [0]
                                              [0]
                                        +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                    [0 1]      [0 1]      [0]
                                        *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                    [0 1]      [0 1]      [0]
                                        -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                    [0 1]      [0 1]      [2]
                                        minus(x1) = [0 0] x1 + [0]
                                                    [0 1]      [0]
                                        div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                      [0 1]      [0 1]      [0]
                                        pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                      [0 1]      [0 1]      [0]
                                        2() = [0]
                                              [0]
                                        ln(x1) = [0 0] x1 + [0]
                                                 [0 1]      [0]
                                        D^#(x1) = [0 1] x1 + [0]
                                                  [0 0]      [0]
                                        c_1() = [0]
                                                [0]
                                        c_2() = [0]
                                                [0]
                                        c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                      [0 1]      [0 1]      [3]
                                        c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                      [0 1]      [0 1]      [3]
                                        c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                      [0 1]      [0 1]      [0]
                                        c_6(x1) = [1 0] x1 + [0]
                                                  [0 1]      [0]
                                        c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                      [0 1]      [0 1]      [0]
                                        c_8(x1) = [1 0] x1 + [0]
                                                  [0 1]      [0]
                                        c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                      [0 1]      [0 1]      [0]
                                     
                                     The strictly oriented rules are moved into the weak component.
                                     
                                     We consider the following Problem:
                                     
                                       Strict DPs:
                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                       Weak DPs:
                                         {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                          , D^#(minus(x)) -> c_6(D^#(x))
                                          , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                          , D^#(ln(x)) -> c_8(D^#(x))
                                          , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                       StartTerms: basic terms
                                       Strategy: innermost
                                     
                                     Certificate: YES(?,O(n^1))
                                     
                                     Application of 'removetails >>> ... >>> ... >>> ...':
                                     -----------------------------------------------------
                                       No dependency-pair could be removed
                                       
                                       We abort the transformation and continue with the subprocessor on the problem
                                       
                                       Strict DPs:
                                         {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                          , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                       Weak DPs:
                                         {  D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                          , D^#(minus(x)) -> c_6(D^#(x))
                                          , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                          , D^#(ln(x)) -> c_8(D^#(x))
                                          , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                       StartTerms: basic terms
                                       Strategy: innermost
                                       
                                       1) The weightgap principle applies, where following rules are oriented strictly:
                                          
                                          Dependency Pairs: {D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                          
                                          Interpretation:
                                          ---------------
                                            The following argument positions are usable:
                                              Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {},
                                              Uargs(-) = {}, Uargs(minus) = {}, Uargs(div) = {},
                                              Uargs(pow) = {}, Uargs(ln) = {}, Uargs(D^#) = {},
                                              Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2},
                                              Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
                                              Uargs(c_7) = {1, 2}, Uargs(c_8) = {1},
                                              Uargs(c_9) = {1, 2}
                                            We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                            Interpretation Functions:
                                             D(x1) = [0 0] x1 + [0]
                                                     [0 0]      [0]
                                             t() = [0]
                                                   [0]
                                             1() = [0]
                                                   [0]
                                             constant() = [0]
                                                          [0]
                                             0() = [0]
                                                   [0]
                                             +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                         [0 1]      [0 1]      [0]
                                             *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                         [0 1]      [0 1]      [2]
                                             -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                         [0 1]      [0 1]      [3]
                                             minus(x1) = [0 0] x1 + [0]
                                                         [0 1]      [0]
                                             div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                           [0 1]      [0 1]      [2]
                                             pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                           [0 1]      [0 1]      [2]
                                             2() = [0]
                                                   [0]
                                             ln(x1) = [0 0] x1 + [0]
                                                      [0 1]      [0]
                                             D^#(x1) = [0 2] x1 + [1]
                                                       [0 3]      [0]
                                             c_1() = [0]
                                                     [0]
                                             c_2() = [0]
                                                     [0]
                                             c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                           [0 1]      [0 1]      [3]
                                             c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                           [0 1]      [0 1]      [2]
                                             c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                           [0 1]      [0 1]      [3]
                                             c_6(x1) = [1 0] x1 + [0]
                                                       [0 1]      [0]
                                             c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                           [0 1]      [0 1]      [2]
                                             c_8(x1) = [1 0] x1 + [0]
                                                       [0 1]      [0]
                                             c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                           [0 1]      [0 1]      [3]
                                          
                                          The strictly oriented rules are moved into the weak component.
                                          
                                          We consider the following Problem:
                                          
                                            Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                            Weak DPs:
                                              {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                               , D^#(minus(x)) -> c_6(D^#(x))
                                               , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                               , D^#(ln(x)) -> c_8(D^#(x))
                                               , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                            StartTerms: basic terms
                                            Strategy: innermost
                                          
                                          Certificate: YES(?,O(n^1))
                                          
                                          Application of 'removetails >>> ... >>> ... >>> ...':
                                          -----------------------------------------------------
                                            No dependency-pair could be removed
                                            
                                            We abort the transformation and continue with the subprocessor on the problem
                                            
                                            Strict DPs: {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                            Weak DPs:
                                              {  D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                               , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                               , D^#(minus(x)) -> c_6(D^#(x))
                                               , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                               , D^#(ln(x)) -> c_8(D^#(x))
                                               , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                            StartTerms: basic terms
                                            Strategy: innermost
                                            
                                            1) The weightgap principle applies, where following rules are oriented strictly:
                                               
                                               Dependency Pairs:
                                                 {D^#(+(x, y)) -> c_3(D^#(x), D^#(y))}
                                               
                                               Interpretation:
                                               ---------------
                                                 The following argument positions are usable:
                                                   Uargs(D) = {}, Uargs(+) = {}, Uargs(*) = {},
                                                   Uargs(-) = {}, Uargs(minus) = {},
                                                   Uargs(div) = {}, Uargs(pow) = {}, Uargs(ln) = {},
                                                   Uargs(D^#) = {}, Uargs(c_3) = {1, 2},
                                                   Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2},
                                                   Uargs(c_6) = {1}, Uargs(c_7) = {1, 2},
                                                   Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}
                                                 We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                                 Interpretation Functions:
                                                  D(x1) = [0 0] x1 + [0]
                                                          [0 0]      [0]
                                                  t() = [0]
                                                        [0]
                                                  1() = [0]
                                                        [0]
                                                  constant() = [0]
                                                               [0]
                                                  0() = [0]
                                                        [0]
                                                  +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                              [0 1]      [0 1]      [2]
                                                  *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                              [0 1]      [0 1]      [0]
                                                  -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                              [0 1]      [0 1]      [0]
                                                  minus(x1) = [0 0] x1 + [0]
                                                              [0 1]      [0]
                                                  div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                                [0 1]      [0 1]      [0]
                                                  pow(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                                [0 1]      [0 1]      [0]
                                                  2() = [0]
                                                        [0]
                                                  ln(x1) = [0 0] x1 + [0]
                                                           [0 1]      [0]
                                                  D^#(x1) = [0 1] x1 + [0]
                                                            [0 0]      [0]
                                                  c_1() = [0]
                                                          [0]
                                                  c_2() = [0]
                                                          [0]
                                                  c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                [0 1]      [0 1]      [0]
                                                  c_4(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                [0 1]      [0 1]      [0]
                                                  c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                [0 1]      [0 1]      [0]
                                                  c_6(x1) = [1 0] x1 + [0]
                                                            [0 1]      [0]
                                                  c_7(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                [0 1]      [0 1]      [0]
                                                  c_8(x1) = [1 0] x1 + [0]
                                                            [0 1]      [0]
                                                  c_9(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                [0 1]      [0 1]      [0]
                                               
                                               The strictly oriented rules are moved into the weak component.
                                               
                                               We consider the following Problem:
                                               
                                                 Weak DPs:
                                                   {  D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                    , D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                                    , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                    , D^#(minus(x)) -> c_6(D^#(x))
                                                    , D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                                    , D^#(ln(x)) -> c_8(D^#(x))
                                                    , D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                                 StartTerms: basic terms
                                                 Strategy: innermost
                                               
                                               Certificate: YES(O(1),O(1))
                                               
                                               Application of 'removetails >>> ... >>> ... >>> ...':
                                               -----------------------------------------------------
                                                 We consider the the dependency-graph
                                                 
                                                   1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                   2: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                   3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                   4: D^#(minus(x)) -> c_6(D^#(x))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                   5: D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                   6: D^#(ln(x)) -> c_8(D^#(x))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                   7: D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))
                                                        --> D^#(pow(x, y)) -> c_9(D^#(x), D^#(y)): 7
                                                        --> D^#(ln(x)) -> c_8(D^#(x)): 6
                                                        --> D^#(div(x, y)) -> c_7(D^#(x), D^#(y)): 5
                                                        --> D^#(minus(x)) -> c_6(D^#(x)): 4
                                                        --> D^#(-(x, y)) -> c_5(D^#(x), D^#(y)): 3
                                                        --> D^#(*(x, y)) -> c_4(D^#(x), D^#(y)): 2
                                                        --> D^#(+(x, y)) -> c_3(D^#(x), D^#(y)): 1
                                                   
                                                 
                                                 together with the congruence-graph
                                                 
                                                   ->{1,7,6,5,4,3,2}                                           Weak SCC
                                                   
                                                   
                                                   Here rules are as follows:
                                                   
                                                     {  1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                      , 2: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))
                                                      , 3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                      , 4: D^#(minus(x)) -> c_6(D^#(x))
                                                      , 5: D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                                      , 6: D^#(ln(x)) -> c_8(D^#(x))
                                                      , 7: D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))}
                                                 
                                                 The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                                 
                                                   {  1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
                                                    , 7: D^#(pow(x, y)) -> c_9(D^#(x), D^#(y))
                                                    , 6: D^#(ln(x)) -> c_8(D^#(x))
                                                    , 5: D^#(div(x, y)) -> c_7(D^#(x), D^#(y))
                                                    , 4: D^#(minus(x)) -> c_6(D^#(x))
                                                    , 3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
                                                    , 2: D^#(*(x, y)) -> c_4(D^#(x), D^#(y))}
                                                 
                                                 We consider the following Problem:
                                                 
                                                   StartTerms: basic terms
                                                   Strategy: innermost
                                                 
                                                 Certificate: YES(O(1),O(1))
                                                 
                                                 Application of 'simpDPRHS >>> ...':
                                                 -----------------------------------
                                                   No rule was simplified
                                                   
                                                   We apply the transformation 'usablerules' on the resulting sub-problems:
                                                   Sub-problem 1:
                                                   --------------
                                                     We consider the problem
                                                     
                                                     StartTerms: basic terms
                                                     Strategy: innermost
                                                     
                                                     The input problem is not a DP-problem.
                                                   
                                                   We abort the transformation and continue with the subprocessor on the problem
                                                   
                                                   StartTerms: basic terms
                                                   Strategy: innermost
                                                   
                                                   1) We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                      
                                                        All strict components are empty, nothing to further orient
                                                      
                                                      We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                      
                                                      StartTerms: basic terms
                                                      Strategy: innermost
                                                      
                                                        We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                        
                                                          All strict components are empty, nothing to further orient
                                                        
                                                        We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                        
                                                        StartTerms: basic terms
                                                        Strategy: innermost
                                                        
                                                          All strict components are empty, nothing to further orient
                                                      
                                                      We abort the transformation and continue with the subprocessor on the problem
                                                      
                                                      StartTerms: basic terms
                                                      Strategy: innermost
                                                      
                                                      1) No dependency-pair could be removed
                                                         
                                                         We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                                         Sub-problem 1:
                                                         --------------
                                                           We consider the problem
                                                           
                                                           StartTerms: basic terms
                                                           Strategy: innermost
                                                           
                                                           We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                                           
                                                             All strict components are empty, nothing to further orient
                                                           
                                                           We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                                           
                                                           StartTerms: basic terms
                                                           Strategy: innermost
                                                           
                                                             We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                             
                                                               All strict components are empty, nothing to further orient
                                                             
                                                             We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                             
                                                             StartTerms: basic terms
                                                             Strategy: innermost
                                                             
                                                               All strict components are empty, nothing to further orient
                                                         
                                                         We abort the transformation and continue with the subprocessor on the problem
                                                         
                                                         StartTerms: basic terms
                                                         Strategy: innermost
                                                         
                                                         1) 'empty' succeeded:
                                                            
                                                            Empty rules are trivially bounded
                                                         
                                                      
                                                   
                                            
                                       
                                  
                             
                        
                   
            
       
  

Hurray, we answered YES(?,O(n^1))