Problem Maude 06 MYNAT nosorts

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputMaude 06 MYNAT nosorts

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputMaude 06 MYNAT nosorts

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  and(tt(), X) -> X
     , plus(N, 0()) -> N
     , plus(N, s(M)) -> s(plus(N, M))
     , x(N, 0()) -> 0()
     , x(N, s(M)) -> plus(x(N, M), N)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), X) -> c_0()
              , 2: plus^#(N, 0()) -> c_1()
              , 3: plus^#(N, s(M)) -> c_2(plus^#(N, M))
              , 4: x^#(N, 0()) -> c_3()
              , 5: x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [       MAYBE        ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{2}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                x(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                x^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), X) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                tt() = [2]
                       [2]
                       [2]
                and^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [7]
                                [2 2 0]      [0 0 0]      [3]
                                [2 2 2]      [0 0 0]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                x(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                x^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {x^#(N, 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(x^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                x^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                              [0 0 0]      [2 2 0]      [3]
                              [0 0 0]      [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))
                  , plus^#(N, 0()) -> c_1()
                  , x(N, 0()) -> 0()
                  , x(N, s(M)) -> plus(x(N, M), N)
                  , plus(N, 0()) -> N
                  , plus(N, s(M)) -> s(plus(N, M))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{3}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), X) -> c_0()
              , 2: plus^#(N, 0()) -> c_1()
              , 3: plus^#(N, s(M)) -> c_2(plus^#(N, M))
              , 4: x^#(N, 0()) -> c_3()
              , 5: x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [       MAYBE        ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{2}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                x(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                x^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), X) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                tt() = [2]
                       [2]
                and^#(x1, x2) = [2 0] x1 + [0 0] x2 + [7]
                                [2 2]      [0 0]      [7]
                c_0() = [0]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                x(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                x^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {x^#(N, 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(x^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                x^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                              [0 0]      [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))
                  , plus^#(N, 0()) -> c_1()
                  , x(N, 0()) -> 0()
                  , x(N, s(M)) -> plus(x(N, M), N)
                  , plus(N, 0()) -> N
                  , plus(N, s(M)) -> s(plus(N, M))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{3}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), X) -> c_0()
              , 2: plus^#(N, 0()) -> c_1()
              , 3: plus^#(N, s(M)) -> c_2(plus^#(N, M))
              , 4: x^#(N, 0()) -> c_3()
              , 5: x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [       MAYBE        ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{2}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                x(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                x^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), X) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                tt() = [7]
                and^#(x1, x2) = [1] x1 + [0] x2 + [7]
                c_0() = [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_2) = {},
                 Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                x(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                x^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {x^#(N, 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(x^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                x^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_3() = [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))
                  , plus^#(N, 0()) -> c_1()
                  , x(N, 0()) -> 0()
                  , x(N, s(M)) -> plus(x(N, M), N)
                  , plus(N, 0()) -> N
                  , plus(N, s(M)) -> s(plus(N, M))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{3}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputMaude 06 MYNAT nosorts

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputMaude 06 MYNAT nosorts

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  and(tt(), X) -> X
     , plus(N, 0()) -> N
     , plus(N, s(M)) -> s(plus(N, M))
     , x(N, 0()) -> 0()
     , x(N, s(M)) -> plus(x(N, M), N)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), X) -> c_0(X)
              , 2: plus^#(N, 0()) -> c_1(N)
              , 3: plus^#(N, s(M)) -> c_2(plus^#(N, M))
              , 4: x^#(N, 0()) -> c_3()
              , 5: x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [       MAYBE        ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{2}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(c_0) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                x(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                x^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), X) -> c_0(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                tt() = [2]
                       [0]
                       [2]
                and^#(x1, x2) = [2 0 2] x1 + [7 7 7] x2 + [7]
                                [2 0 2]      [7 7 7]      [7]
                                [2 0 2]      [7 7 7]      [7]
                c_0(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(c_0) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                tt() = [0]
                       [0]
                       [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                x(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                x^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {x^#(N, 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(x^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                x^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                              [0 0 0]      [2 2 0]      [3]
                              [0 0 0]      [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))
                  , plus^#(N, 0()) -> c_1(N)
                  , x(N, 0()) -> 0()
                  , x(N, s(M)) -> plus(x(N, M), N)
                  , plus(N, 0()) -> N
                  , plus(N, s(M)) -> s(plus(N, M))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{3}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), X) -> c_0(X)
              , 2: plus^#(N, 0()) -> c_1(N)
              , 3: plus^#(N, s(M)) -> c_2(plus^#(N, M))
              , 4: x^#(N, 0()) -> c_3()
              , 5: x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [       MAYBE        ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{2}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(c_0) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                x(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                x^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), X) -> c_0(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                tt() = [2]
                       [2]
                and^#(x1, x2) = [2 2] x1 + [7 7] x2 + [7]
                                [2 2]      [7 7]      [3]
                c_0(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(c_0) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                tt() = [0]
                       [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                x(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                x^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {x^#(N, 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(x^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                x^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                              [0 0]      [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))
                  , plus^#(N, 0()) -> c_1(N)
                  , x(N, 0()) -> 0()
                  , x(N, s(M)) -> plus(x(N, M), N)
                  , plus(N, 0()) -> N
                  , plus(N, s(M)) -> s(plus(N, M))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{3}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: and^#(tt(), X) -> c_0(X)
              , 2: plus^#(N, 0()) -> c_1(N)
              , 3: plus^#(N, s(M)) -> c_2(plus^#(N, M))
              , 4: x^#(N, 0()) -> c_3()
              , 5: x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [       MAYBE        ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{2}                                               [         NA         ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(c_0) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                x(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                x^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(tt(), X) -> c_0(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                tt() = [5]
                and^#(x1, x2) = [3] x1 + [7] x2 + [0]
                c_0(x1) = [1] x1 + [0]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(and) = {}, Uargs(plus) = {}, Uargs(s) = {}, Uargs(x) = {},
                 Uargs(and^#) = {}, Uargs(c_0) = {}, Uargs(plus^#) = {},
                 Uargs(c_1) = {}, Uargs(c_2) = {}, Uargs(x^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                tt() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                x(x1, x2) = [0] x1 + [0] x2 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                x^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {x^#(N, 0()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(x^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                x^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_3() = [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{2}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  x^#(N, s(M)) -> c_4(plus^#(x(N, M), N))
                  , plus^#(N, 0()) -> c_1(N)
                  , x(N, 0()) -> 0()
                  , x(N, s(M)) -> plus(x(N, M), N)
                  , plus(N, 0()) -> N
                  , plus(N, s(M)) -> s(plus(N, M))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {5}->{3}->{2}.
           
           * Path {5}->{3}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  x(N, 0()) -> 0()
                , x(N, s(M)) -> plus(x(N, M), N)
                , plus(N, 0()) -> N
                , plus(N, s(M)) -> s(plus(N, M))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.