Tool CaT
stdout:
YES(?,O(n^1))
Problem:
1(q0(1(x1))) -> 0(1(q1(x1)))
1(q0(0(x1))) -> 0(0(q1(x1)))
1(q1(1(x1))) -> 1(1(q1(x1)))
1(q1(0(x1))) -> 1(0(q1(x1)))
0(q1(x1)) -> q2(1(x1))
1(q2(x1)) -> q2(1(x1))
0(q2(x1)) -> 0(q0(x1))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {5,4}
transitions:
01(21) -> 22*
q01(30) -> 31*
q01(20) -> 21*
q01(28) -> 29*
q21(7) -> 8*
11(14) -> 15*
11(16) -> 17*
11(6) -> 7*
10(2) -> 4*
10(1) -> 4*
10(3) -> 4*
q00(2) -> 1*
q00(1) -> 1*
q00(3) -> 1*
00(2) -> 5*
00(1) -> 5*
00(3) -> 5*
q10(2) -> 2*
q10(1) -> 2*
q10(3) -> 2*
q20(2) -> 3*
q20(1) -> 3*
q20(3) -> 3*
1 -> 28,14
2 -> 20,6
3 -> 30,16
8 -> 17,7,4,5
15 -> 7*
17 -> 7*
22 -> 5*
29 -> 21*
31 -> 21*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ 1(q0(1(x1))) -> 0(1(q1(x1)))
, 1(q0(0(x1))) -> 0(0(q1(x1)))
, 1(q1(1(x1))) -> 1(1(q1(x1)))
, 1(q1(0(x1))) -> 1(0(q1(x1)))
, 0(q1(x1)) -> q2(1(x1))
, 1(q2(x1)) -> q2(1(x1))
, 0(q2(x1)) -> 0(q0(x1))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ 1(q0(1(x1))) -> 0(1(q1(x1)))
, 1(q0(0(x1))) -> 0(0(q1(x1)))
, 1(q1(1(x1))) -> 1(1(q1(x1)))
, 1(q1(0(x1))) -> 1(0(q1(x1)))
, 0(q1(x1)) -> q2(1(x1))
, 1(q2(x1)) -> q2(1(x1))
, 0(q2(x1)) -> 0(q0(x1))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ 1_0(2) -> 1
, 1_1(2) -> 3
, q0_0(2) -> 2
, q0_1(2) -> 4
, 0_0(2) -> 1
, 0_1(4) -> 1
, q1_0(2) -> 2
, q2_0(2) -> 2
, q2_1(3) -> 1
, q2_1(3) -> 3}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ 1(q0(1(x1))) -> 0(1(q1(x1)))
, 1(q0(0(x1))) -> 0(0(q1(x1)))
, 1(q1(1(x1))) -> 1(1(q1(x1)))
, 1(q1(0(x1))) -> 1(0(q1(x1)))
, 0(q1(x1)) -> q2(1(x1))
, 1(q2(x1)) -> q2(1(x1))
, 0(q2(x1)) -> 0(q0(x1))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ 1(q0(1(x1))) -> 0(1(q1(x1)))
, 1(q0(0(x1))) -> 0(0(q1(x1)))
, 1(q1(1(x1))) -> 1(1(q1(x1)))
, 1(q1(0(x1))) -> 1(0(q1(x1)))
, 0(q1(x1)) -> q2(1(x1))
, 1(q2(x1)) -> q2(1(x1))
, 0(q2(x1)) -> 0(q0(x1))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ 1_0(2) -> 1
, 1_1(2) -> 3
, q0_0(2) -> 2
, q0_1(2) -> 4
, 0_0(2) -> 1
, 0_1(4) -> 1
, q1_0(2) -> 2
, q2_0(2) -> 2
, q2_1(3) -> 1
, q2_1(3) -> 3}