Problem Mixed innermost cade12

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade12

stdout:

MAYBE

Problem:
 f(true(),x,y) -> f(and(gt(x,y),gt(y,s(s(0())))),plus(s(0()),x),double(y))
 gt(0(),v) -> false()
 gt(s(u),0()) -> true()
 gt(s(u),s(v)) -> gt(u,v)
 and(x,true()) -> x
 and(x,false()) -> false()
 plus(n,0()) -> n
 plus(n,s(m)) -> s(plus(n,m))
 plus(plus(n,m),u) -> plus(n,plus(m,u))
 double(0()) -> 0()
 double(s(x)) -> s(s(double(x)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade12

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade12

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(true(), x, y) ->
       f(and(gt(x, y), gt(y, s(s(0())))), plus(s(0()), x), double(y))
     , gt(0(), v) -> false()
     , gt(s(u), 0()) -> true()
     , gt(s(u), s(v)) -> gt(u, v)
     , and(x, true()) -> x
     , and(x, false()) -> false()
     , plus(n, 0()) -> n
     , plus(n, s(m)) -> s(plus(n, m))
     , plus(plus(n, m), u) -> plus(n, plus(m, u))
     , double(0()) -> 0()
     , double(s(x)) -> s(s(double(x)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(true(), x, y) ->
                   c_0(f^#(and(gt(x, y), gt(y, s(s(0())))),
                           plus(s(0()), x),
                           double(y)))
              , 2: gt^#(0(), v) -> c_1()
              , 3: gt^#(s(u), 0()) -> c_2()
              , 4: gt^#(s(u), s(v)) -> c_3(gt^#(u, v))
              , 5: and^#(x, true()) -> c_4()
              , 6: and^#(x, false()) -> c_5()
              , 7: plus^#(n, 0()) -> c_6()
              , 8: plus^#(n, s(m)) -> c_7(plus^#(n, m))
              , 9: plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
              , 10: double^#(0()) -> c_9()
              , 11: double^#(s(x)) -> c_10(double^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^2))    ]
                |
                `->{10}                                                  [   YES(?,O(n^2))    ]
             
             ->{8,9}                                                     [     inherited      ]
                |
                `->{7}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                |->{2}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  gt(0(), v) -> false()
                , gt(s(u), 0()) -> true()
                , gt(s(u), s(v)) -> gt(u, v)
                , and(x, true()) -> x
                , and(x, false()) -> false()
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))
                , double(0()) -> 0()
                , double(s(x)) -> s(s(double(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 3] x1 + [0]
                        [0 0 1]      [4]
                        [0 0 0]      [2]
                gt^#(x1, x2) = [1 1 0] x1 + [1 0 2] x2 + [0]
                               [0 0 2]      [0 0 0]      [2]
                               [1 1 0]      [4 1 0]      [0]
                c_3(x1) = [1 2 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 2 0]      [3]
           
           * Path {4}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(0(), v) -> c_1()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [2]
                      [0]
                gt^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [2 0 0]      [0 4 0]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), 0()) -> c_2()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 2]      [2]
                        [0 0 0]      [2]
                0() = [0]
                      [0]
                      [0]
                gt^#(x1, x2) = [0 2 2] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [4 0 0]      [4]
                               [0 0 0]      [0 0 0]      [2]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 0 2]      [0]
                          [0 0 0]      [2]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, true()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                         [2]
                and^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                [0 0 0]      [2 2 0]      [3]
                                [0 0 0]      [2 2 2]      [3]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                and^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                [0 0 0]      [2 2 0]      [3]
                                [0 0 0]      [2 2 2]      [3]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {8,9}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {8,9}->{7}.
           
           * Path {8,9}->{7}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_7(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_6()
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(s(x)) -> c_10(double^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                double^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_10(x1) = [1 0 0] x1 + [1]
                           [2 0 2]      [0]
                           [0 0 0]      [0]
           
           * Path {11}->{10}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(0()) -> c_9()}
               Weak Rules: {double^#(s(x)) -> c_10(double^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                double^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_9() = [1]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [2]
                           [0 0 0]      [3]
                           [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(true(), x, y) ->
                   c_0(f^#(and(gt(x, y), gt(y, s(s(0())))),
                           plus(s(0()), x),
                           double(y)))
              , 2: gt^#(0(), v) -> c_1()
              , 3: gt^#(s(u), 0()) -> c_2()
              , 4: gt^#(s(u), s(v)) -> c_3(gt^#(u, v))
              , 5: and^#(x, true()) -> c_4()
              , 6: and^#(x, false()) -> c_5()
              , 7: plus^#(n, 0()) -> c_6()
              , 8: plus^#(n, s(m)) -> c_7(plus^#(n, m))
              , 9: plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
              , 10: double^#(0()) -> c_9()
              , 11: double^#(s(x)) -> c_10(double^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{10}                                                  [   YES(?,O(n^1))    ]
             
             ->{8,9}                                                     [     inherited      ]
                |
                `->{7}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                |->{2}                                                   [   YES(?,O(n^2))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  gt(0(), v) -> false()
                , gt(s(u), 0()) -> true()
                , gt(s(u), s(v)) -> gt(u, v)
                , and(x, true()) -> x
                , and(x, false()) -> false()
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))
                , double(0()) -> 0()
                , double(s(x)) -> s(s(double(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                gt^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                               [0 0]      [0 0]      [4]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {4}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(0(), v) -> c_1()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [2]
                0() = [2]
                      [2]
                gt^#(x1, x2) = [3 2] x1 + [2 3] x2 + [0]
                               [3 3]      [0 1]      [0]
                c_1() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), 0()) -> c_2()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [2]
                0() = [0]
                      [2]
                gt^#(x1, x2) = [2 0] x1 + [0 2] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [3]
                          [0 0]      [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, true()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                and^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                [0 0]      [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                and^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                [0 0]      [2 2]      [7]
                c_5() = [0]
                        [1]
           
           * Path {8,9}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {8,9}->{7}.
           
           * Path {8,9}->{7}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_7(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_6()
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(s(x)) -> c_10(double^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                double^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11}->{10}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(0()) -> c_9()}
               Weak Rules: {double^#(s(x)) -> c_10(double^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                0() = [2]
                      [2]
                double^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_9() = [1]
                        [0]
                c_10(x1) = [1 0] x1 + [5]
                           [2 0]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(true(), x, y) ->
                   c_0(f^#(and(gt(x, y), gt(y, s(s(0())))),
                           plus(s(0()), x),
                           double(y)))
              , 2: gt^#(0(), v) -> c_1()
              , 3: gt^#(s(u), 0()) -> c_2()
              , 4: gt^#(s(u), s(v)) -> c_3(gt^#(u, v))
              , 5: and^#(x, true()) -> c_4()
              , 6: and^#(x, false()) -> c_5()
              , 7: plus^#(n, 0()) -> c_6()
              , 8: plus^#(n, s(m)) -> c_7(plus^#(n, m))
              , 9: plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
              , 10: double^#(0()) -> c_9()
              , 11: double^#(s(x)) -> c_10(double^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{10}                                                  [   YES(?,O(n^1))    ]
             
             ->{8,9}                                                     [     inherited      ]
                |
                `->{7}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                |->{2}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  gt(0(), v) -> false()
                , gt(s(u), 0()) -> true()
                , gt(s(u), s(v)) -> gt(u, v)
                , and(x, true()) -> x
                , and(x, false()) -> false()
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))
                , double(0()) -> 0()
                , double(s(x)) -> s(s(double(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(0(), v) -> c_1()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                gt^#(x1, x2) = [3] x1 + [3] x2 + [2]
                c_1() = [1]
                c_3(x1) = [1] x1 + [5]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), 0()) -> c_2()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2() = [1]
                c_3(x1) = [1] x1 + [7]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, true()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [7]
                and^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_4() = [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                and^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_5() = [1]
           
           * Path {8,9}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {8,9}->{7}.
           
           * Path {8,9}->{7}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_7(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_6()
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [3] x1 + [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(s(x)) -> c_10(double^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                double^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{10}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(0()) -> c_9()}
               Weak Rules: {double^#(s(x)) -> c_10(double^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                0() = [2]
                double^#(x1) = [2] x1 + [0]
                c_9() = [1]
                c_10(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade12

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade12

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(true(), x, y) ->
       f(and(gt(x, y), gt(y, s(s(0())))), plus(s(0()), x), double(y))
     , gt(0(), v) -> false()
     , gt(s(u), 0()) -> true()
     , gt(s(u), s(v)) -> gt(u, v)
     , and(x, true()) -> x
     , and(x, false()) -> false()
     , plus(n, 0()) -> n
     , plus(n, s(m)) -> s(plus(n, m))
     , plus(plus(n, m), u) -> plus(n, plus(m, u))
     , double(0()) -> 0()
     , double(s(x)) -> s(s(double(x)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(true(), x, y) ->
                   c_0(f^#(and(gt(x, y), gt(y, s(s(0())))),
                           plus(s(0()), x),
                           double(y)))
              , 2: gt^#(0(), v) -> c_1()
              , 3: gt^#(s(u), 0()) -> c_2()
              , 4: gt^#(s(u), s(v)) -> c_3(gt^#(u, v))
              , 5: and^#(x, true()) -> c_4(x)
              , 6: and^#(x, false()) -> c_5()
              , 7: plus^#(n, 0()) -> c_6(n)
              , 8: plus^#(n, s(m)) -> c_7(plus^#(n, m))
              , 9: plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
              , 10: double^#(0()) -> c_9()
              , 11: double^#(s(x)) -> c_10(double^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^2))    ]
                |
                `->{10}                                                  [   YES(?,O(n^2))    ]
             
             ->{8,9}                                                     [     inherited      ]
                |
                `->{7}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                |->{2}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  gt(0(), v) -> false()
                , gt(s(u), 0()) -> true()
                , gt(s(u), s(v)) -> gt(u, v)
                , and(x, true()) -> x
                , and(x, false()) -> false()
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))
                , double(0()) -> 0()
                , double(s(x)) -> s(s(double(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 3] x1 + [0]
                        [0 0 1]      [4]
                        [0 0 0]      [2]
                gt^#(x1, x2) = [1 1 0] x1 + [1 0 2] x2 + [0]
                               [0 0 2]      [0 0 0]      [2]
                               [1 1 0]      [4 1 0]      [0]
                c_3(x1) = [1 2 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 2 0]      [3]
           
           * Path {4}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(0(), v) -> c_1()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [2]
                      [0]
                gt^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [2 0 0]      [0 4 0]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), 0()) -> c_2()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 2]      [2]
                        [0 0 0]      [2]
                0() = [0]
                      [0]
                      [0]
                gt^#(x1, x2) = [0 2 2] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [4 0 0]      [4]
                               [0 0 0]      [0 0 0]      [2]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 0 2]      [0]
                          [0 0 0]      [2]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, true()) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [0]
                         [2]
                and^#(x1, x2) = [7 7 7] x1 + [2 0 2] x2 + [7]
                                [7 7 7]      [2 0 2]      [7]
                                [7 7 7]      [2 0 2]      [7]
                c_4(x1) = [1 3 3] x1 + [0]
                          [1 1 1]      [1]
                          [1 1 1]      [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                          [2]
                and^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                                [0 0 0]      [2 2 0]      [3]
                                [0 0 0]      [2 2 2]      [3]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {8,9}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {8,9}->{7}.
           
           * Path {8,9}->{7}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_7(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_6(n)
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(s(x)) -> c_10(double^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                double^#(x1) = [0 1 0] x1 + [2]
                               [6 0 0]      [0]
                               [2 3 0]      [2]
                c_10(x1) = [1 0 0] x1 + [1]
                           [2 0 2]      [0]
                           [0 0 0]      [0]
           
           * Path {11}->{10}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                and(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                gt(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                gt^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                and^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(0()) -> c_9()}
               Weak Rules: {double^#(s(x)) -> c_10(double^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                double^#(x1) = [2 2 2] x1 + [0]
                               [0 6 0]      [0]
                               [0 0 2]      [0]
                c_9() = [1]
                        [0]
                        [0]
                c_10(x1) = [1 0 0] x1 + [2]
                           [0 0 0]      [3]
                           [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(true(), x, y) ->
                   c_0(f^#(and(gt(x, y), gt(y, s(s(0())))),
                           plus(s(0()), x),
                           double(y)))
              , 2: gt^#(0(), v) -> c_1()
              , 3: gt^#(s(u), 0()) -> c_2()
              , 4: gt^#(s(u), s(v)) -> c_3(gt^#(u, v))
              , 5: and^#(x, true()) -> c_4(x)
              , 6: and^#(x, false()) -> c_5()
              , 7: plus^#(n, 0()) -> c_6(n)
              , 8: plus^#(n, s(m)) -> c_7(plus^#(n, m))
              , 9: plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
              , 10: double^#(0()) -> c_9()
              , 11: double^#(s(x)) -> c_10(double^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{10}                                                  [   YES(?,O(n^1))    ]
             
             ->{8,9}                                                     [     inherited      ]
                |
                `->{7}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                |->{2}                                                   [   YES(?,O(n^2))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  gt(0(), v) -> false()
                , gt(s(u), 0()) -> true()
                , gt(s(u), s(v)) -> gt(u, v)
                , and(x, true()) -> x
                , and(x, false()) -> false()
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))
                , double(0()) -> 0()
                , double(s(x)) -> s(s(double(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [0]
                gt^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                               [0 0]      [0 0]      [4]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
           
           * Path {4}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(0(), v) -> c_1()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [2]
                0() = [2]
                      [2]
                gt^#(x1, x2) = [3 2] x1 + [2 3] x2 + [0]
                               [3 3]      [0 1]      [0]
                c_1() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), 0()) -> c_2()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [2]
                0() = [0]
                      [2]
                gt^#(x1, x2) = [2 0] x1 + [0 2] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_2() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [3]
                          [0 0]      [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, true()) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [2]
                         [2]
                and^#(x1, x2) = [7 7] x1 + [2 2] x2 + [7]
                                [7 7]      [2 2]      [3]
                c_4(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [2]
                          [2]
                and^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                                [0 0]      [2 2]      [7]
                c_5() = [0]
                        [1]
           
           * Path {8,9}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {8,9}->{7}.
           
           * Path {8,9}->{7}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_7(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_6(n)
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [3 3] x1 + [0]
                               [3 3]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(s(x)) -> c_10(double^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                double^#(x1) = [0 1] x1 + [1]
                               [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11}->{10}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                false() = [0]
                          [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                gt^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                and^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(0()) -> c_9()}
               Weak Rules: {double^#(s(x)) -> c_10(double^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                0() = [2]
                      [2]
                double^#(x1) = [1 2] x1 + [2]
                               [6 1]      [0]
                c_9() = [1]
                        [0]
                c_10(x1) = [1 0] x1 + [5]
                           [2 0]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(true(), x, y) ->
                   c_0(f^#(and(gt(x, y), gt(y, s(s(0())))),
                           plus(s(0()), x),
                           double(y)))
              , 2: gt^#(0(), v) -> c_1()
              , 3: gt^#(s(u), 0()) -> c_2()
              , 4: gt^#(s(u), s(v)) -> c_3(gt^#(u, v))
              , 5: and^#(x, true()) -> c_4(x)
              , 6: and^#(x, false()) -> c_5()
              , 7: plus^#(n, 0()) -> c_6(n)
              , 8: plus^#(n, s(m)) -> c_7(plus^#(n, m))
              , 9: plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
              , 10: double^#(0()) -> c_9()
              , 11: double^#(s(x)) -> c_10(double^#(x))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{10}                                                  [   YES(?,O(n^1))    ]
             
             ->{8,9}                                                     [     inherited      ]
                |
                `->{7}                                                   [       MAYBE        ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                |->{2}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  gt(0(), v) -> false()
                , gt(s(u), 0()) -> true()
                , gt(s(u), s(v)) -> gt(u, v)
                , and(x, true()) -> x
                , and(x, false()) -> false()
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))
                , double(0()) -> 0()
                , double(s(x)) -> s(s(double(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(0(), v) -> c_1()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                gt^#(x1, x2) = [3] x1 + [3] x2 + [2]
                c_1() = [1]
                c_3(x1) = [1] x1 + [5]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {gt^#(s(u), 0()) -> c_2()}
               Weak Rules: {gt^#(s(u), s(v)) -> c_3(gt^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_2() = [1]
                c_3(x1) = [1] x1 + [7]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, true()) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                true() = [5]
                and^#(x1, x2) = [7] x1 + [3] x2 + [0]
                c_4(x1) = [1] x1 + [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {and^#(x, false()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(and^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                false() = [7]
                and^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_5() = [1]
           
           * Path {8,9}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {8,9}->{7}.
           
           * Path {8,9}->{7}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_7(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_8(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_6(n)
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [3] x1 + [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(s(x)) -> c_10(double^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                double^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{10}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(and) = {}, Uargs(gt) = {}, Uargs(s) = {},
                 Uargs(plus) = {}, Uargs(double) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(gt^#) = {}, Uargs(c_3) = {},
                 Uargs(and^#) = {}, Uargs(c_4) = {}, Uargs(plus^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
                 Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                true() = [0]
                and(x1, x2) = [0] x1 + [0] x2 + [0]
                gt(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                0() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                double(x1) = [0] x1 + [0]
                false() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(0()) -> c_9()}
               Weak Rules: {double^#(s(x)) -> c_10(double^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(double^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [0]
                0() = [2]
                double^#(x1) = [2] x1 + [0]
                c_9() = [1]
                c_10(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.