Problem Mixed innermost cade13

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade13

stdout:

MAYBE

Problem:
 div(x,s(y)) -> d(x,s(y),0())
 d(x,s(y),z) -> cond(ge(x,z),x,y,z)
 cond(true(),x,y,z) -> s(d(x,s(y),plus(s(y),z)))
 cond(false(),x,y,z) -> 0()
 ge(u,0()) -> true()
 ge(0(),s(v)) -> false()
 ge(s(u),s(v)) -> ge(u,v)
 plus(n,0()) -> n
 plus(n,s(m)) -> s(plus(n,m))
 plus(plus(n,m),u) -> plus(n,plus(m,u))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade13

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade13

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  div(x, s(y)) -> d(x, s(y), 0())
     , d(x, s(y), z) -> cond(ge(x, z), x, y, z)
     , cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
     , cond(false(), x, y, z) -> 0()
     , ge(u, 0()) -> true()
     , ge(0(), s(v)) -> false()
     , ge(s(u), s(v)) -> ge(u, v)
     , plus(n, 0()) -> n
     , plus(n, s(m)) -> s(plus(n, m))
     , plus(plus(n, m), u) -> plus(n, plus(m, u))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: div^#(x, s(y)) -> c_0(d^#(x, s(y), 0()))
              , 2: d^#(x, s(y), z) -> c_1(cond^#(ge(x, z), x, y, z))
              , 3: cond^#(true(), x, y, z) -> c_2(d^#(x, s(y), plus(s(y), z)))
              , 4: cond^#(false(), x, y, z) -> c_3()
              , 5: ge^#(u, 0()) -> c_4()
              , 6: ge^#(0(), s(v)) -> c_5()
              , 7: ge^#(s(u), s(v)) -> c_6(ge^#(u, v))
              , 8: plus^#(n, 0()) -> c_7()
              , 9: plus^#(n, s(m)) -> c_8(plus^#(n, m))
              , 10: plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{9,10}                                                    [     inherited      ]
                |
                `->{8}                                                   [       MAYBE        ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^3))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,3}                                                 [     inherited      ]
                    |
                    `->{4}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(u, 0()) -> true()
                , ge(0(), s(v)) -> false()
                , ge(s(u), s(v)) -> ge(u, v)
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                div^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                d^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_6(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {7}->{5}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                div^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                d^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(u, 0()) -> c_4()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                0() = [2]
                      [2]
                      [2]
                ge^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_4() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                div^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                d^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(v)) -> c_5()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                0() = [0]
                      [2]
                      [0]
                ge^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [3]
                          [2 0 0]      [2]
                          [0 0 0]      [2]
           
           * Path {9,10}: inherited
             ----------------------
             
             This path is subsumed by the proof of path {9,10}->{8}.
           
           * Path {9,10}->{8}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_8(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_7()
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: div^#(x, s(y)) -> c_0(d^#(x, s(y), 0()))
              , 2: d^#(x, s(y), z) -> c_1(cond^#(ge(x, z), x, y, z))
              , 3: cond^#(true(), x, y, z) -> c_2(d^#(x, s(y), plus(s(y), z)))
              , 4: cond^#(false(), x, y, z) -> c_3()
              , 5: ge^#(u, 0()) -> c_4()
              , 6: ge^#(0(), s(v)) -> c_5()
              , 7: ge^#(s(u), s(v)) -> c_6(ge^#(u, v))
              , 8: plus^#(n, 0()) -> c_7()
              , 9: plus^#(n, s(m)) -> c_8(plus^#(n, m))
              , 10: plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{9,10}                                                    [     inherited      ]
                |
                `->{8}                                                   [       MAYBE        ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
                |
                |->{5}                                                   [   YES(?,O(n^2))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,3}                                                 [     inherited      ]
                    |
                    `->{4}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(u, 0()) -> true()
                , ge(0(), s(v)) -> false()
                , ge(s(u), s(v)) -> ge(u, v)
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                d(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                d^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                ge^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                ge^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_6(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {7}->{5}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                d^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(u, 0()) -> c_4()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                0() = [2]
                      [0]
                ge^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_4() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                d^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(v)) -> c_5()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                0() = [2]
                      [2]
                ge^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_5() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {9,10}: inherited
             ----------------------
             
             This path is subsumed by the proof of path {9,10}->{8}.
           
           * Path {9,10}->{8}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_8(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_7()
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: div^#(x, s(y)) -> c_0(d^#(x, s(y), 0()))
              , 2: d^#(x, s(y), z) -> c_1(cond^#(ge(x, z), x, y, z))
              , 3: cond^#(true(), x, y, z) -> c_2(d^#(x, s(y), plus(s(y), z)))
              , 4: cond^#(false(), x, y, z) -> c_3()
              , 5: ge^#(u, 0()) -> c_4()
              , 6: ge^#(0(), s(v)) -> c_5()
              , 7: ge^#(s(u), s(v)) -> c_6(ge^#(u, v))
              , 8: plus^#(n, 0()) -> c_7()
              , 9: plus^#(n, s(m)) -> c_8(plus^#(n, m))
              , 10: plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{9,10}                                                    [     inherited      ]
                |
                `->{8}                                                   [       MAYBE        ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,3}                                                 [     inherited      ]
                    |
                    `->{4}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(u, 0()) -> true()
                , ge(0(), s(v)) -> false()
                , ge(s(u), s(v)) -> ge(u, v)
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                d(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                cond(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                d^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                cond^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                ge^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                d(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                cond(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                d^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                cond^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(u, 0()) -> c_4()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_4() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{6}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                d(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                cond(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                d^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                cond^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7() = [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(v)) -> c_5()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_5() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {9,10}: inherited
             ----------------------
             
             This path is subsumed by the proof of path {9,10}->{8}.
           
           * Path {9,10}->{8}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_8(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_7()
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade13

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost cade13

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  div(x, s(y)) -> d(x, s(y), 0())
     , d(x, s(y), z) -> cond(ge(x, z), x, y, z)
     , cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
     , cond(false(), x, y, z) -> 0()
     , ge(u, 0()) -> true()
     , ge(0(), s(v)) -> false()
     , ge(s(u), s(v)) -> ge(u, v)
     , plus(n, 0()) -> n
     , plus(n, s(m)) -> s(plus(n, m))
     , plus(plus(n, m), u) -> plus(n, plus(m, u))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: div^#(x, s(y)) -> c_0(d^#(x, s(y), 0()))
              , 2: d^#(x, s(y), z) -> c_1(cond^#(ge(x, z), x, y, z))
              , 3: cond^#(true(), x, y, z) -> c_2(d^#(x, s(y), plus(s(y), z)))
              , 4: cond^#(false(), x, y, z) -> c_3()
              , 5: ge^#(u, 0()) -> c_4()
              , 6: ge^#(0(), s(v)) -> c_5()
              , 7: ge^#(s(u), s(v)) -> c_6(ge^#(u, v))
              , 8: plus^#(n, 0()) -> c_7(n)
              , 9: plus^#(n, s(m)) -> c_8(plus^#(n, m))
              , 10: plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{9,10}                                                    [     inherited      ]
                |
                `->{8}                                                   [       MAYBE        ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^3))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,3}                                                 [     inherited      ]
                    |
                    `->{4}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(u, 0()) -> true()
                , ge(0(), s(v)) -> false()
                , ge(s(u), s(v)) -> ge(u, v)
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                div^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                d^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_6(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {7}->{5}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                div^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                d^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(u, 0()) -> c_4()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                0() = [2]
                      [2]
                      [2]
                ge^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_4() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                div^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                d^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(v)) -> c_5()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                0() = [0]
                      [2]
                      [0]
                ge^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [3]
                          [2 0 0]      [2]
                          [0 0 0]      [2]
           
           * Path {9,10}: inherited
             ----------------------
             
             This path is subsumed by the proof of path {9,10}->{8}.
           
           * Path {9,10}->{8}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_8(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_7(n)
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: div^#(x, s(y)) -> c_0(d^#(x, s(y), 0()))
              , 2: d^#(x, s(y), z) -> c_1(cond^#(ge(x, z), x, y, z))
              , 3: cond^#(true(), x, y, z) -> c_2(d^#(x, s(y), plus(s(y), z)))
              , 4: cond^#(false(), x, y, z) -> c_3()
              , 5: ge^#(u, 0()) -> c_4()
              , 6: ge^#(0(), s(v)) -> c_5()
              , 7: ge^#(s(u), s(v)) -> c_6(ge^#(u, v))
              , 8: plus^#(n, 0()) -> c_7(n)
              , 9: plus^#(n, s(m)) -> c_8(plus^#(n, m))
              , 10: plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{9,10}                                                    [     inherited      ]
                |
                `->{8}                                                   [       MAYBE        ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
                |
                |->{5}                                                   [   YES(?,O(n^2))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,3}                                                 [     inherited      ]
                    |
                    `->{4}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(u, 0()) -> true()
                , ge(0(), s(v)) -> false()
                , ge(s(u), s(v)) -> ge(u, v)
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                d(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                d^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                ge^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                ge^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_6(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {7}->{5}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                d^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(u, 0()) -> c_4()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                0() = [2]
                      [0]
                ge^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_4() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                cond(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                       [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                d^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                cond^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(v)) -> c_5()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                0() = [2]
                      [2]
                ge^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_5() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {9,10}: inherited
             ----------------------
             
             This path is subsumed by the proof of path {9,10}->{8}.
           
           * Path {9,10}->{8}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_8(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_7(n)
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: div^#(x, s(y)) -> c_0(d^#(x, s(y), 0()))
              , 2: d^#(x, s(y), z) -> c_1(cond^#(ge(x, z), x, y, z))
              , 3: cond^#(true(), x, y, z) -> c_2(d^#(x, s(y), plus(s(y), z)))
              , 4: cond^#(false(), x, y, z) -> c_3()
              , 5: ge^#(u, 0()) -> c_4()
              , 6: ge^#(0(), s(v)) -> c_5()
              , 7: ge^#(s(u), s(v)) -> c_6(ge^#(u, v))
              , 8: plus^#(n, 0()) -> c_7(n)
              , 9: plus^#(n, s(m)) -> c_8(plus^#(n, m))
              , 10: plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{9,10}                                                    [     inherited      ]
                |
                `->{8}                                                   [       MAYBE        ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,3}                                                 [     inherited      ]
                    |
                    `->{4}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {1}->{2,3}->{4}.
           
           * Path {1}->{2,3}->{4}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  ge(u, 0()) -> true()
                , ge(0(), s(v)) -> false()
                , ge(s(u), s(v)) -> ge(u, v)
                , plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                d(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                cond(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                d^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                cond^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                ge^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                d(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                cond(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                d^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                cond^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(u, 0()) -> c_4()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_4() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{6}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(div) = {}, Uargs(s) = {}, Uargs(d) = {}, Uargs(cond) = {},
                 Uargs(ge) = {}, Uargs(plus) = {}, Uargs(div^#) = {},
                 Uargs(c_0) = {}, Uargs(d^#) = {}, Uargs(c_1) = {},
                 Uargs(cond^#) = {}, Uargs(c_2) = {}, Uargs(ge^#) = {},
                 Uargs(c_6) = {1}, Uargs(plus^#) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                d(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                cond(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                d^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                cond^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(v)) -> c_5()}
               Weak Rules: {ge^#(s(u), s(v)) -> c_6(ge^#(u, v))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_5() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {9,10}: inherited
             ----------------------
             
             This path is subsumed by the proof of path {9,10}->{8}.
           
           * Path {9,10}->{8}: MAYBE
             -----------------------
             
             The usable rules for this path are:
             
               {  plus(n, 0()) -> n
                , plus(n, s(m)) -> s(plus(n, m))
                , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(n, s(m)) -> c_8(plus^#(n, m))
                  , plus^#(plus(n, m), u) -> c_9(plus^#(n, plus(m, u)))
                  , plus^#(n, 0()) -> c_7(n)
                  , plus(n, 0()) -> n
                  , plus(n, s(m)) -> s(plus(n, m))
                  , plus(plus(n, m), u) -> plus(n, plus(m, u))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.