Problem Mixed innermost test10

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test10

stdout:

MAYBE

Problem:
 h(X,Z) -> f(X,s(X),Z)
 f(X,Y,g(X,Y)) -> h(0(),g(X,Y))
 g(0(),Y) -> 0()
 g(X,s(Y)) -> g(X,Y)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test10

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test10

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  h(X, Z) -> f(X, s(X), Z)
     , f(X, Y, g(X, Y)) -> h(0(), g(X, Y))
     , g(0(), Y) -> 0()
     , g(X, s(Y)) -> g(X, Y)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X, Z) -> c_0(f^#(X, s(X), Z))
              , 2: f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))
              , 3: g^#(0(), Y) -> c_2()
              , 4: g^#(X, s(Y)) -> c_3(g^#(X, Y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^3))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{1,2}                                                     [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  g(0(), Y) -> 0()
                , g(X, s(Y)) -> g(X, Y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {1}, Uargs(f^#) = {},
                 Uargs(c_1) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 1]      [2]
                g(x1, x2) = [2 0 0] x1 + [0 0 1] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [3 0 0]      [0 0 0]      [0]
                0() = [3]
                      [0]
                      [0]
                h^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [3 3 3]      [0]
                              [0 0 0]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X, Z) -> c_0(f^#(X, s(X), Z))
                  , f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))}
               Weak Rules:
                 {  g(0(), Y) -> 0()
                  , g(X, s(Y)) -> g(X, Y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                h^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                g^#(x1, x2) = [0 0 0] x1 + [0 1 2] x2 + [2]
                              [4 4 4]      [2 2 2]      [0]
                              [4 4 4]      [2 0 2]      [0]
                c_3(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                h^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(0(), Y) -> c_2()}
               Weak Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [0]
                        [0 1 2]      [0]
                        [0 0 0]      [3]
                0() = [2]
                      [2]
                      [2]
                g^#(x1, x2) = [2 0 2] x1 + [0 4 3] x2 + [0]
                              [2 2 2]      [4 0 2]      [2]
                              [0 2 2]      [4 0 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X, Z) -> c_0(f^#(X, s(X), Z))
              , 2: f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))
              , 3: g^#(0(), Y) -> c_2()
              , 4: g^#(X, s(Y)) -> c_3(g^#(X, Y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,2}                                                     [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  g(0(), Y) -> 0()
                , g(X, s(Y)) -> g(X, Y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {1}, Uargs(f^#) = {},
                 Uargs(c_1) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 1]      [2]
                g(x1, x2) = [2 0] x1 + [0 1] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                h^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X, Z) -> c_0(f^#(X, s(X), Z))
                  , f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))}
               Weak Rules:
                 {  g(0(), Y) -> 0()
                  , g(X, s(Y)) -> g(X, Y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                h^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                g^#(x1, x2) = [0 0] x1 + [0 1] x2 + [0]
                              [4 4]      [4 5]      [0]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                h^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(0(), Y) -> c_2()}
               Weak Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [2]
                0() = [0]
                      [2]
                g^#(x1, x2) = [0 2] x1 + [0 0] x2 + [0]
                              [4 0]      [2 2]      [0]
                c_2() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X, Z) -> c_0(f^#(X, s(X), Z))
              , 2: f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))
              , 3: g^#(0(), Y) -> c_2()
              , 4: g^#(X, s(Y)) -> c_3(g^#(X, Y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,2}                                                     [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  g(0(), Y) -> 0()
                , g(X, s(Y)) -> g(X, Y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {1}, Uargs(f^#) = {},
                 Uargs(c_1) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [1] x1 + [3]
                g(x1, x2) = [0] x1 + [2] x2 + [3]
                0() = [2]
                h^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [1] x2 + [0] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X, Z) -> c_0(f^#(X, s(X), Z))
                  , f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))}
               Weak Rules:
                 {  g(0(), Y) -> 0()
                  , g(X, s(Y)) -> g(X, Y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [1] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                h^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                g^#(x1, x2) = [7] x1 + [2] x2 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                h^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(0(), Y) -> c_2()}
               Weak Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                g^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_2() = [1]
                c_3(x1) = [1] x1 + [4]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test10

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test10

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  h(X, Z) -> f(X, s(X), Z)
     , f(X, Y, g(X, Y)) -> h(0(), g(X, Y))
     , g(0(), Y) -> 0()
     , g(X, s(Y)) -> g(X, Y)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X, Z) -> c_0(f^#(X, s(X), Z))
              , 2: f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))
              , 3: g^#(0(), Y) -> c_2()
              , 4: g^#(X, s(Y)) -> c_3(g^#(X, Y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^3))    ]
                |
                `->{3}                                                   [   YES(?,O(n^2))    ]
             
             ->{1,2}                                                     [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  g(0(), Y) -> 0()
                , g(X, s(Y)) -> g(X, Y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {1}, Uargs(f^#) = {},
                 Uargs(c_1) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 1]      [2]
                g(x1, x2) = [2 0 0] x1 + [0 0 1] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [3 0 0]      [0 0 0]      [0]
                0() = [3]
                      [0]
                      [0]
                h^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [3 3 3]      [0]
                              [0 0 0]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X, Z) -> c_0(f^#(X, s(X), Z))
                  , f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))}
               Weak Rules:
                 {  g(0(), Y) -> 0()
                  , g(X, s(Y)) -> g(X, Y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                h^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                g^#(x1, x2) = [0 0 0] x1 + [0 1 2] x2 + [2]
                              [4 4 4]      [2 2 2]      [0]
                              [4 4 4]      [2 0 2]      [0]
                c_3(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {4}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                h^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(0(), Y) -> c_2()}
               Weak Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [0]
                        [0 1 2]      [0]
                        [0 0 0]      [3]
                0() = [2]
                      [2]
                      [2]
                g^#(x1, x2) = [2 0 2] x1 + [0 4 3] x2 + [0]
                              [2 2 2]      [4 0 2]      [2]
                              [0 2 2]      [4 0 0]      [0]
                c_2() = [1]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X, Z) -> c_0(f^#(X, s(X), Z))
              , 2: f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))
              , 3: g^#(0(), Y) -> c_2()
              , 4: g^#(X, s(Y)) -> c_3(g^#(X, Y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,2}                                                     [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  g(0(), Y) -> 0()
                , g(X, s(Y)) -> g(X, Y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {1}, Uargs(f^#) = {},
                 Uargs(c_1) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 1]      [2]
                g(x1, x2) = [2 0] x1 + [0 1] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                h^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X, Z) -> c_0(f^#(X, s(X), Z))
                  , f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))}
               Weak Rules:
                 {  g(0(), Y) -> 0()
                  , g(X, s(Y)) -> g(X, Y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                h^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                g^#(x1, x2) = [0 0] x1 + [0 1] x2 + [0]
                              [4 4]      [4 5]      [0]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                h^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(0(), Y) -> c_2()}
               Weak Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [2]
                0() = [0]
                      [2]
                g^#(x1, x2) = [0 2] x1 + [0 0] x2 + [0]
                              [4 0]      [2 2]      [0]
                c_2() = [1]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 0]      [7]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: h^#(X, Z) -> c_0(f^#(X, s(X), Z))
              , 2: f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))
              , 3: g^#(0(), Y) -> c_2()
              , 4: g^#(X, s(Y)) -> c_3(g^#(X, Y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [   YES(?,O(n^1))    ]
             
             ->{1,2}                                                     [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  g(0(), Y) -> 0()
                , g(X, s(Y)) -> g(X, Y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {1}, Uargs(f^#) = {},
                 Uargs(c_1) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [1] x1 + [3]
                g(x1, x2) = [0] x1 + [2] x2 + [3]
                0() = [2]
                h^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [1] x2 + [0] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  h^#(X, Z) -> c_0(f^#(X, s(X), Z))
                  , f^#(X, Y, g(X, Y)) -> c_1(h^#(0(), g(X, Y)))}
               Weak Rules:
                 {  g(0(), Y) -> 0()
                  , g(X, s(Y)) -> g(X, Y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [1] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                h^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                g^#(x1, x2) = [7] x1 + [2] x2 + [0]
                c_3(x1) = [1] x1 + [7]
           
           * Path {4}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(h) = {}, Uargs(f) = {}, Uargs(s) = {}, Uargs(g) = {},
                 Uargs(h^#) = {}, Uargs(c_0) = {}, Uargs(f^#) = {}, Uargs(c_1) = {},
                 Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                h(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                s(x1) = [0] x1 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                h^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(0(), Y) -> c_2()}
               Weak Rules: {g^#(X, s(Y)) -> c_3(g^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                0() = [2]
                g^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_2() = [1]
                c_3(x1) = [1] x1 + [4]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.