Problem Mixed innermost test77

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test77

stdout:

MAYBE

Problem:
 +(X,0()) -> X
 +(X,s(Y)) -> s(+(X,Y))
 double(X) -> +(X,X)
 f(0(),s(0()),X) -> f(X,double(X),X)
 g(X,Y) -> X
 g(X,Y) -> Y

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test77

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test77

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  +(X, 0()) -> X
     , +(X, s(Y)) -> s(+(X, Y))
     , double(X) -> +(X, X)
     , f(0(), s(0()), X) -> f(X, double(X), X)
     , g(X, Y) -> X
     , g(X, Y) -> Y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: +^#(X, 0()) -> c_0()
              , 2: +^#(X, s(Y)) -> c_1(+^#(X, Y))
              , 3: double^#(X) -> c_2(+^#(X, X))
              , 4: f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
              , 5: g^#(X, Y) -> c_4()
              , 6: g^#(X, Y) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [       MAYBE        ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
                |
                |->{1}                                                   [    YES(?,O(1))     ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
                    |
                    `->{1}                                               [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [1 1 0]      [0 0 1]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [3 3 3] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [3 0 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(X) -> c_2(+^#(X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [0 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0()}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                +^#(x1, x2) = [0 0 0] x1 + [2 0 2] x2 + [0]
                              [0 0 0]      [2 0 2]      [0]
                              [0 0 0]      [2 2 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [2 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, s(Y)) -> c_1(+^#(X, Y))}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [2]
                        [0 0 2]      [0]
                        [0 0 0]      [2]
                +^#(x1, x2) = [0 0 0] x1 + [2 1 2] x2 + [0]
                              [4 4 4]      [0 2 0]      [0]
                              [0 4 2]      [4 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [1 0 1] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{2}->{1}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0()}
               Weak Rules:
                 {  +^#(X, s(Y)) -> c_1(+^#(X, Y))
                  , double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [2]
                s(x1) = [1 3 2] x1 + [2]
                        [0 0 3]      [2]
                        [0 0 0]      [2]
                +^#(x1, x2) = [0 0 0] x1 + [2 0 2] x2 + [0]
                              [4 0 0]      [2 2 0]      [0]
                              [4 4 4]      [3 2 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [6]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [2 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  double(X) -> +(X, X)
                , +(X, 0()) -> X
                , +(X, s(Y)) -> s(+(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
                  , double(X) -> +(X, X)
                  , +(X, 0()) -> X
                  , +(X, s(Y)) -> s(+(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [7]
                              [0 0 0]      [0 0 0]      [7]
                              [0 0 0]      [0 0 0]      [7]
                c_4() = [0]
                        [3]
                        [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [7]
                              [0 0 0]      [0 0 0]      [7]
                              [0 0 0]      [0 0 0]      [7]
                c_5() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: +^#(X, 0()) -> c_0()
              , 2: +^#(X, s(Y)) -> c_1(+^#(X, Y))
              , 3: double^#(X) -> c_2(+^#(X, X))
              , 4: f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
              , 5: g^#(X, Y) -> c_4()
              , 6: g^#(X, Y) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [       MAYBE        ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
                |
                |->{1}                                                   [    YES(?,O(1))     ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
                    |
                    `->{1}                                               [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [0 1]      [1 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [3 3] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [0 3] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(X) -> c_2(+^#(X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [0 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0()}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                +^#(x1, x2) = [0 0] x1 + [0 2] x2 + [0]
                              [0 0]      [2 2]      [0]
                c_0() = [1]
                        [0]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, s(Y)) -> c_1(+^#(X, Y))}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [2]
                +^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                              [4 4]      [4 1]      [0]
                c_1(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {3}->{2}->{1}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0()}
               Weak Rules:
                 {  +^#(X, s(Y)) -> c_1(+^#(X, Y))
                  , double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [4]
                +^#(x1, x2) = [0 0] x1 + [2 1] x2 + [0]
                              [0 0]      [0 2]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [2 1] x1 + [7]
                          [0 0]      [7]
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  double(X) -> +(X, X)
                , +(X, 0()) -> X
                , +(X, s(Y)) -> s(+(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
                  , double(X) -> +(X, X)
                  , +(X, 0()) -> X
                  , +(X, s(Y)) -> s(+(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [7]
                              [0 0]      [0 0]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [7]
                              [0 0]      [0 0]      [7]
                c_5() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: +^#(X, 0()) -> c_0()
              , 2: +^#(X, s(Y)) -> c_1(+^#(X, Y))
              , 3: double^#(X) -> c_2(+^#(X, X))
              , 4: f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
              , 5: g^#(X, Y) -> c_4()
              , 6: g^#(X, Y) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [       MAYBE        ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
                |
                |->{1}                                                   [    YES(?,O(1))     ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
                    |
                    `->{1}                                               [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {double^#(X) -> c_2(+^#(X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +^#(x1, x2) = [0] x1 + [2] x2 + [2]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [3] x1 + [0]
           
           * Path {3}->{1}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0()}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                +^#(x1, x2) = [0] x1 + [7] x2 + [1]
                c_0() = [0]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [1] x1 + [3]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, s(Y)) -> c_1(+^#(X, Y))}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                +^#(x1, x2) = [0] x1 + [3] x2 + [2]
                c_1(x1) = [1] x1 + [5]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [2] x1 + [3]
           
           * Path {3}->{2}->{1}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0()}
               Weak Rules:
                 {  +^#(X, s(Y)) -> c_1(+^#(X, Y))
                  , double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                +^#(x1, x2) = [4] x1 + [2] x2 + [4]
                c_0() = [1]
                c_1(x1) = [1] x1 + [2]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [1] x1 + [3]
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  double(X) -> +(X, X)
                , +(X, 0()) -> X
                , +(X, s(Y)) -> s(+(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
                  , double(X) -> +(X, X)
                  , +(X, 0()) -> X
                  , +(X, s(Y)) -> s(+(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0] x1 + [0] x2 + [7]
                c_4() = [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0] x1 + [0] x2 + [7]
                c_5() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test77

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputMixed innermost test77

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  +(X, 0()) -> X
     , +(X, s(Y)) -> s(+(X, Y))
     , double(X) -> +(X, X)
     , f(0(), s(0()), X) -> f(X, double(X), X)
     , g(X, Y) -> X
     , g(X, Y) -> Y}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: +^#(X, 0()) -> c_0(X)
              , 2: +^#(X, s(Y)) -> c_1(+^#(X, Y))
              , 3: double^#(X) -> c_2(+^#(X, X))
              , 4: f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
              , 5: g^#(X, Y) -> c_4(X)
              , 6: g^#(X, Y) -> c_5(Y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [       MAYBE        ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
                |
                |->{1}                                                   [    YES(?,O(1))     ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
                    |
                    `->{1}                                               [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [1 1 0]      [0 0 1]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [3 3 3] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [3 0 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(X) -> c_2(+^#(X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [0 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0(X)}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(double^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                +^#(x1, x2) = [0 0 0] x1 + [2 2 2] x2 + [0]
                              [0 0 0]      [3 1 0]      [0]
                              [0 0 0]      [2 2 0]      [0]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [2 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, s(Y)) -> c_1(+^#(X, Y))}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 0] x1 + [2]
                        [0 0 2]      [0]
                        [0 0 0]      [2]
                +^#(x1, x2) = [0 0 0] x1 + [2 1 2] x2 + [0]
                              [4 4 4]      [0 2 0]      [0]
                              [0 4 2]      [4 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [1 0 1] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {3}->{2}->{1}: YES(?,O(n^2))
             ---------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0(X)}
               Weak Rules:
                 {  +^#(X, s(Y)) -> c_1(+^#(X, Y))
                  , double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 2 0] x1 + [1]
                        [0 1 4]      [2]
                        [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [2 2 0] x2 + [0]
                              [4 4 4]      [4 3 0]      [0]
                              [4 0 4]      [0 2 0]      [0]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [2]
                          [2 0 0]      [7]
                          [0 0 0]      [3]
                double^#(x1) = [7 7 7] x1 + [7]
                               [7 7 7]      [7]
                               [7 7 7]      [7]
                c_2(x1) = [2 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  double(X) -> +(X, X)
                , +(X, 0()) -> X
                , +(X, s(Y)) -> s(+(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
                  , double(X) -> +(X, X)
                  , +(X, 0()) -> X
                  , +(X, s(Y)) -> s(+(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_4(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [7 7 7] x1 + [0 0 0] x2 + [7]
                              [7 7 7]      [0 0 0]      [7]
                              [7 7 7]      [0 0 0]      [7]
                c_4(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                double(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                double^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_5(Y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0 0] x1 + [7 7 7] x2 + [7]
                              [0 0 0]      [7 7 7]      [7]
                              [0 0 0]      [7 7 7]      [7]
                c_5(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: +^#(X, 0()) -> c_0(X)
              , 2: +^#(X, s(Y)) -> c_1(+^#(X, Y))
              , 3: double^#(X) -> c_2(+^#(X, X))
              , 4: f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
              , 5: g^#(X, Y) -> c_4(X)
              , 6: g^#(X, Y) -> c_5(Y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [       MAYBE        ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
                |
                |->{1}                                                   [    YES(?,O(1))     ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
                    |
                    `->{1}                                               [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [0 1]      [1 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [3 3] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [0 3] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(X) -> c_2(+^#(X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [0 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {3}->{1}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0(X)}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(double^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                +^#(x1, x2) = [0 0] x1 + [2 0] x2 + [0]
                              [0 0]      [2 2]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, s(Y)) -> c_1(+^#(X, Y))}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [2]
                +^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                              [4 4]      [4 1]      [0]
                c_1(x1) = [1 0] x1 + [7]
                          [0 0]      [7]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {3}->{2}->{1}: YES(?,O(n^2))
             ---------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0(X)}
               Weak Rules:
                 {  +^#(X, s(Y)) -> c_1(+^#(X, Y))
                  , double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                +^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                              [4 4]      [2 3]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [7]
                          [0 0]      [0]
                double^#(x1) = [7 7] x1 + [7]
                               [7 7]      [7]
                c_2(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  double(X) -> +(X, X)
                , +(X, 0()) -> X
                , +(X, s(Y)) -> s(+(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
                  , double(X) -> +(X, X)
                  , +(X, 0()) -> X
                  , +(X, s(Y)) -> s(+(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_4(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [7 7] x1 + [0 0] x2 + [7]
                              [7 7]      [0 0]      [7]
                c_4(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                double(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                double^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_5(Y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0 0] x1 + [7 7] x2 + [7]
                              [0 0]      [7 7]      [7]
                c_5(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: +^#(X, 0()) -> c_0(X)
              , 2: +^#(X, s(Y)) -> c_1(+^#(X, Y))
              , 3: double^#(X) -> c_2(+^#(X, X))
              , 4: f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
              , 5: g^#(X, Y) -> c_4(X)
              , 6: g^#(X, Y) -> c_5(Y)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [       MAYBE        ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
                |
                |->{1}                                                   [    YES(?,O(1))     ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
                    |
                    `->{1}                                               [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [3] x1 + [0]
                c_2(x1) = [3] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {double^#(X) -> c_2(+^#(X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(double^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +^#(x1, x2) = [0] x1 + [2] x2 + [2]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [3] x1 + [0]
           
           * Path {3}->{1}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0(X)}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(double^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                +^#(x1, x2) = [2] x1 + [0] x2 + [2]
                c_0(x1) = [0] x1 + [1]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [3] x1 + [1]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, s(Y)) -> c_1(+^#(X, Y))}
               Weak Rules: {double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                +^#(x1, x2) = [0] x1 + [3] x2 + [2]
                c_1(x1) = [1] x1 + [5]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [2] x1 + [3]
           
           * Path {3}->{2}->{1}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {+^#(X, 0()) -> c_0(X)}
               Weak Rules:
                 {  +^#(X, s(Y)) -> c_1(+^#(X, Y))
                  , double^#(X) -> c_2(+^#(X, X))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(double^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                +^#(x1, x2) = [0] x1 + [3] x2 + [2]
                c_0(x1) = [0] x1 + [1]
                c_1(x1) = [1] x1 + [0]
                double^#(x1) = [7] x1 + [7]
                c_2(x1) = [2] x1 + [3]
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  double(X) -> +(X, X)
                , +(X, 0()) -> X
                , +(X, s(Y)) -> s(+(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(0(), s(0()), X) -> c_3(f^#(X, double(X), X))
                  , double(X) -> +(X, X)
                  , +(X, 0()) -> X
                  , +(X, s(Y)) -> s(+(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_4(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [7] x1 + [0] x2 + [7]
                c_4(x1) = [1] x1 + [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(+) = {}, Uargs(s) = {}, Uargs(double) = {}, Uargs(f) = {},
                 Uargs(g) = {}, Uargs(+^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(double^#) = {}, Uargs(c_2) = {}, Uargs(f^#) = {},
                 Uargs(c_3) = {}, Uargs(g^#) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                double(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1, x2) = [0] x1 + [0] x2 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                double^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_3(x1) = [0] x1 + [0]
                g^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(X, Y) -> c_5(Y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1, x2) = [0] x1 + [7] x2 + [7]
                c_5(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.