Tool CaT
stdout:
MAYBE
Problem:
even(0()) -> true()
even(s(0())) -> false()
even(s(s(x))) -> even(x)
half(0()) -> 0()
half(s(s(x))) -> s(half(x))
plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x))
plus(zero(),y) -> y
plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y))))
id(x) -> x
if(true(),x,y) -> x
if(false(),x,y) -> y
not(x) -> if(x,false(),true())
gt(s(x),zero()) -> true()
gt(zero(),y) -> false()
gt(s(x),s(y)) -> gt(x,y)
times(0(),y) -> 0()
times(s(x),y) -> if_times(even(s(x)),s(x),y)
if_times(true(),s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y))
if_times(false(),s(x),y) -> plus(y,times(x,y))
Proof:
OpenTool IRC1
stdout:
MAYBE
Tool IRC2
stdout:
MAYBE
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))}
Proof Output:
None of the processors succeeded.
Details of failed attempt(s):
-----------------------------
1) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: even^#(0()) -> c_0()
, 2: even^#(s(0())) -> c_1()
, 3: even^#(s(s(x))) -> c_2(even^#(x))
, 4: half^#(0()) -> c_3()
, 5: half^#(s(s(x))) -> c_4(half^#(x))
, 6: plus^#(s(x), s(y)) ->
c_5(plus^#(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))
, 7: plus^#(s(x), x) ->
c_6(plus^#(if(gt(x, x), id(x), id(x)), s(x)))
, 8: plus^#(zero(), y) -> c_7()
, 9: plus^#(id(x), s(y)) ->
c_8(plus^#(x, if(gt(s(y), y), y, s(y))))
, 10: id^#(x) -> c_9()
, 11: if^#(true(), x, y) -> c_10()
, 12: if^#(false(), x, y) -> c_11()
, 13: not^#(x) -> c_12(if^#(x, false(), true()))
, 14: gt^#(s(x), zero()) -> c_13()
, 15: gt^#(zero(), y) -> c_14()
, 16: gt^#(s(x), s(y)) -> c_15(gt^#(x, y))
, 17: times^#(0(), y) -> c_16()
, 18: times^#(s(x), y) -> c_17(if_times^#(even(s(x)), s(x), y))
, 19: if_times^#(true(), s(x), y) ->
c_18(plus^#(times(half(s(x)), y), times(half(s(x)), y)))
, 20: if_times^#(false(), s(x), y) -> c_19(plus^#(y, times(x, y)))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{18} [ inherited ]
|
|->{19} [ inherited ]
| |
| |->{6,9,7} [ inherited ]
| | |
| | `->{8} [ NA ]
| |
| `->{8} [ NA ]
|
`->{20} [ inherited ]
|
|->{6,9,7} [ inherited ]
| |
| `->{8} [ NA ]
|
`->{8} [ MAYBE ]
->{17} [ YES(?,O(1)) ]
->{16} [ YES(?,O(n^1)) ]
|
|->{14} [ YES(?,O(n^1)) ]
|
`->{15} [ YES(?,O(n^1)) ]
->{13} [ YES(?,O(1)) ]
|
|->{11} [ YES(?,O(1)) ]
|
`->{12} [ YES(?,O(1)) ]
->{10} [ YES(?,O(1)) ]
->{5} [ YES(?,O(n^1)) ]
|
`->{4} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(1)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {1}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [1] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [3] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {even^#(s(s(x))) -> c_2(even^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
even^#(x1) = [2] x1 + [0]
c_2(x1) = [1] x1 + [7]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {1}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {even^#(0()) -> c_0()}
Weak Rules: {even^#(s(s(x))) -> c_2(even^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
s(x1) = [1] x1 + [0]
even^#(x1) = [2] x1 + [4]
c_0() = [1]
c_2(x1) = [1] x1 + [0]
* Path {3}->{2}: YES(?,O(1))
--------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {1}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {even^#(s(0())) -> c_1()}
Weak Rules: {even^#(s(s(x))) -> c_2(even^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [0]
s(x1) = [0] x1 + [0]
even^#(x1) = [0] x1 + [1]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
* Path {5}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {1}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [1] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [3] x1 + [0]
c_3() = [0]
c_4(x1) = [1] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {half^#(s(s(x))) -> c_4(half^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(half^#) = {}, Uargs(c_4) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
half^#(x1) = [2] x1 + [0]
c_4(x1) = [1] x1 + [7]
* Path {5}->{4}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {1}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [1] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {half^#(0()) -> c_3()}
Weak Rules: {half^#(s(s(x))) -> c_4(half^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(half^#) = {}, Uargs(c_4) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
s(x1) = [1] x1 + [0]
half^#(x1) = [2] x1 + [4]
c_3() = [1]
c_4(x1) = [1] x1 + [0]
* Path {10}: YES(?,O(1))
----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {id^#(x) -> c_9()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(id^#) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
id^#(x1) = [0] x1 + [7]
c_9() = [0]
* Path {13}: YES(?,O(1))
----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [1] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [3] x1 + [0]
c_12(x1) = [3] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {not^#(x) -> c_12(if^#(x, false(), true()))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
true() = [0]
false() = [0]
if^#(x1, x2, x3) = [7] x1 + [0] x2 + [0] x3 + [4]
not^#(x1) = [7] x1 + [7]
c_12(x1) = [0] x1 + [3]
* Path {13}->{11}: YES(?,O(1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {1},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [1] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {if^#(true(), x, y) -> c_10()}
Weak Rules: {not^#(x) -> c_12(if^#(x, false(), true()))}
Proof Output:
The following argument positions are usable:
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
true() = [2]
false() = [0]
if^#(x1, x2, x3) = [2] x1 + [0] x2 + [0] x3 + [0]
c_10() = [1]
not^#(x1) = [7] x1 + [7]
c_12(x1) = [2] x1 + [7]
* Path {13}->{12}: YES(?,O(1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {1},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [1] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {if^#(false(), x, y) -> c_11()}
Weak Rules: {not^#(x) -> c_12(if^#(x, false(), true()))}
Proof Output:
The following argument positions are usable:
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
true() = [0]
false() = [2]
if^#(x1, x2, x3) = [2] x1 + [0] x2 + [0] x3 + [4]
c_11() = [1]
not^#(x1) = [7] x1 + [7]
c_12(x1) = [1] x1 + [3]
* Path {16}: YES(?,O(n^1))
------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {1}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [1] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [3] x1 + [3] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [1] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {gt^#(s(x), s(y)) -> c_15(gt^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
c_15(x1) = [1] x1 + [7]
* Path {16}->{14}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {1}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [1] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {gt^#(s(x), zero()) -> c_13()}
Weak Rules: {gt^#(s(x), s(y)) -> c_15(gt^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
zero() = [2]
gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
c_13() = [1]
c_15(x1) = [1] x1 + [7]
* Path {16}->{15}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {1}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [1] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {gt^#(zero(), y) -> c_14()}
Weak Rules: {gt^#(s(x), s(y)) -> c_15(gt^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
zero() = [2]
gt^#(x1, x2) = [2] x1 + [0] x2 + [4]
c_14() = [1]
c_15(x1) = [1] x1 + [2]
* Path {17}: YES(?,O(1))
----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_8) = {}, Uargs(id^#) = {},
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {},
Uargs(gt^#) = {}, Uargs(c_15) = {}, Uargs(times^#) = {},
Uargs(c_17) = {}, Uargs(if_times^#) = {}, Uargs(c_18) = {},
Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7() = [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9() = [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10() = [0]
c_11() = [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {times^#(0(), y) -> c_16()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(times^#) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [7]
times^#(x1, x2) = [1] x1 + [0] x2 + [7]
c_16() = [1]
* Path {18}: inherited
--------------------
This path is subsumed by the proof of path {18}->{20}->{6,9,7}->{8}.
* Path {18}->{19}: inherited
--------------------------
This path is subsumed by the proof of path {18}->{19}->{6,9,7}->{8}.
* Path {18}->{19}->{6,9,7}: inherited
-----------------------------------
This path is subsumed by the proof of path {18}->{19}->{6,9,7}->{8}.
* Path {18}->{19}->{6,9,7}->{8}: NA
---------------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {18}->{19}->{8}: NA
------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {18}->{20}: inherited
--------------------------
This path is subsumed by the proof of path {18}->{20}->{6,9,7}->{8}.
* Path {18}->{20}->{6,9,7}: inherited
-----------------------------------
This path is subsumed by the proof of path {18}->{20}->{6,9,7}->{8}.
* Path {18}->{20}->{6,9,7}->{8}: NA
---------------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {18}->{20}->{8}: MAYBE
---------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ if_times^#(false(), s(x), y) -> c_19(plus^#(y, times(x, y)))
, times^#(s(x), y) -> c_17(if_times^#(even(s(x)), s(x), y))
, plus^#(zero(), y) -> c_7()
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
Proof Output:
The input cannot be shown compatible
2) 'matrix-interpretation of dimension 1' failed due to the following reason:
The input cannot be shown compatible
3) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
4) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
Tool RC1
stdout:
MAYBE
Tool RC2
stdout:
MAYBE
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))}
Proof Output:
None of the processors succeeded.
Details of failed attempt(s):
-----------------------------
1) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: even^#(0()) -> c_0()
, 2: even^#(s(0())) -> c_1()
, 3: even^#(s(s(x))) -> c_2(even^#(x))
, 4: half^#(0()) -> c_3()
, 5: half^#(s(s(x))) -> c_4(half^#(x))
, 6: plus^#(s(x), s(y)) ->
c_5(plus^#(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))
, 7: plus^#(s(x), x) ->
c_6(plus^#(if(gt(x, x), id(x), id(x)), s(x)))
, 8: plus^#(zero(), y) -> c_7(y)
, 9: plus^#(id(x), s(y)) ->
c_8(plus^#(x, if(gt(s(y), y), y, s(y))))
, 10: id^#(x) -> c_9(x)
, 11: if^#(true(), x, y) -> c_10(x)
, 12: if^#(false(), x, y) -> c_11(y)
, 13: not^#(x) -> c_12(if^#(x, false(), true()))
, 14: gt^#(s(x), zero()) -> c_13()
, 15: gt^#(zero(), y) -> c_14()
, 16: gt^#(s(x), s(y)) -> c_15(gt^#(x, y))
, 17: times^#(0(), y) -> c_16()
, 18: times^#(s(x), y) -> c_17(if_times^#(even(s(x)), s(x), y))
, 19: if_times^#(true(), s(x), y) ->
c_18(plus^#(times(half(s(x)), y), times(half(s(x)), y)))
, 20: if_times^#(false(), s(x), y) -> c_19(plus^#(y, times(x, y)))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{18} [ inherited ]
|
|->{19} [ inherited ]
| |
| |->{6,9,7} [ inherited ]
| | |
| | `->{8} [ NA ]
| |
| `->{8} [ NA ]
|
`->{20} [ inherited ]
|
|->{6,9,7} [ inherited ]
| |
| `->{8} [ NA ]
|
`->{8} [ MAYBE ]
->{17} [ YES(?,O(1)) ]
->{16} [ YES(?,O(n^1)) ]
|
|->{14} [ YES(?,O(n^1)) ]
|
`->{15} [ YES(?,O(n^1)) ]
->{13} [ YES(?,O(1)) ]
|
|->{11} [ YES(?,O(1)) ]
|
`->{12} [ YES(?,O(1)) ]
->{10} [ YES(?,O(1)) ]
->{5} [ YES(?,O(n^1)) ]
|
`->{4} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(1)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {1}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [1] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [3] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {even^#(s(s(x))) -> c_2(even^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
even^#(x1) = [2] x1 + [0]
c_2(x1) = [1] x1 + [7]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {1}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {even^#(0()) -> c_0()}
Weak Rules: {even^#(s(s(x))) -> c_2(even^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
s(x1) = [1] x1 + [0]
even^#(x1) = [2] x1 + [4]
c_0() = [1]
c_2(x1) = [1] x1 + [0]
* Path {3}->{2}: YES(?,O(1))
--------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {1}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {even^#(s(0())) -> c_1()}
Weak Rules: {even^#(s(s(x))) -> c_2(even^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(even^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [0]
s(x1) = [0] x1 + [0]
even^#(x1) = [0] x1 + [1]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
* Path {5}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {1}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [1] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [3] x1 + [0]
c_3() = [0]
c_4(x1) = [1] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {half^#(s(s(x))) -> c_4(half^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(half^#) = {}, Uargs(c_4) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
half^#(x1) = [2] x1 + [0]
c_4(x1) = [1] x1 + [7]
* Path {5}->{4}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {1}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [1] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {half^#(0()) -> c_3()}
Weak Rules: {half^#(s(s(x))) -> c_4(half^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(half^#) = {}, Uargs(c_4) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [2]
s(x1) = [1] x1 + [0]
half^#(x1) = [2] x1 + [4]
c_3() = [1]
c_4(x1) = [1] x1 + [0]
* Path {10}: YES(?,O(1))
----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [3] x1 + [0]
c_9(x1) = [1] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {id^#(x) -> c_9(x)}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(id^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
id^#(x1) = [7] x1 + [7]
c_9(x1) = [1] x1 + [0]
* Path {13}: YES(?,O(1))
----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [1] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [3] x1 + [0]
c_12(x1) = [3] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {not^#(x) -> c_12(if^#(x, false(), true()))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(if^#) = {}, Uargs(not^#) = {}, Uargs(c_12) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
true() = [0]
false() = [0]
if^#(x1, x2, x3) = [7] x1 + [0] x2 + [0] x3 + [4]
not^#(x1) = [7] x1 + [7]
c_12(x1) = [0] x1 + [3]
* Path {13}->{11}: YES(?,O(1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {1}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [3] x2 + [0] x3 + [0]
c_10(x1) = [1] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [1] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {if^#(true(), x, y) -> c_10(x)}
Weak Rules: {not^#(x) -> c_12(if^#(x, false(), true()))}
Proof Output:
The following argument positions are usable:
Uargs(if^#) = {}, Uargs(c_10) = {}, Uargs(not^#) = {},
Uargs(c_12) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
true() = [2]
false() = [0]
if^#(x1, x2, x3) = [2] x1 + [2] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [1]
not^#(x1) = [7] x1 + [7]
c_12(x1) = [2] x1 + [7]
* Path {13}->{12}: YES(?,O(1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {1}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [3] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [1] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [1] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {if^#(false(), x, y) -> c_11(y)}
Weak Rules: {not^#(x) -> c_12(if^#(x, false(), true()))}
Proof Output:
The following argument positions are usable:
Uargs(if^#) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
true() = [0]
false() = [2]
if^#(x1, x2, x3) = [2] x1 + [0] x2 + [0] x3 + [4]
c_11(x1) = [0] x1 + [1]
not^#(x1) = [7] x1 + [7]
c_12(x1) = [1] x1 + [3]
* Path {16}: YES(?,O(n^1))
------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [1] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [3] x1 + [3] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [1] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {gt^#(s(x), s(y)) -> c_15(gt^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
c_15(x1) = [1] x1 + [7]
* Path {16}->{14}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [1] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {gt^#(s(x), zero()) -> c_13()}
Weak Rules: {gt^#(s(x), s(y)) -> c_15(gt^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
zero() = [2]
gt^#(x1, x2) = [2] x1 + [2] x2 + [0]
c_13() = [1]
c_15(x1) = [1] x1 + [7]
* Path {16}->{15}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [1] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {gt^#(zero(), y) -> c_14()}
Weak Rules: {gt^#(s(x), s(y)) -> c_15(gt^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(s) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
s(x1) = [1] x1 + [2]
zero() = [2]
gt^#(x1, x2) = [2] x1 + [0] x2 + [4]
c_14() = [1]
c_15(x1) = [1] x1 + [2]
* Path {17}: YES(?,O(1))
----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(even) = {}, Uargs(s) = {}, Uargs(half) = {},
Uargs(plus) = {}, Uargs(if) = {}, Uargs(gt) = {}, Uargs(not) = {},
Uargs(id) = {}, Uargs(times) = {}, Uargs(if_times) = {},
Uargs(even^#) = {}, Uargs(c_2) = {}, Uargs(half^#) = {},
Uargs(c_4) = {}, Uargs(plus^#) = {}, Uargs(c_5) = {},
Uargs(c_6) = {}, Uargs(c_7) = {}, Uargs(c_8) = {},
Uargs(id^#) = {}, Uargs(c_9) = {}, Uargs(if^#) = {},
Uargs(c_10) = {}, Uargs(c_11) = {}, Uargs(not^#) = {},
Uargs(c_12) = {}, Uargs(gt^#) = {}, Uargs(c_15) = {},
Uargs(times^#) = {}, Uargs(c_17) = {}, Uargs(if_times^#) = {},
Uargs(c_18) = {}, Uargs(c_19) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
even(x1) = [0] x1 + [0]
0() = [0]
true() = [0]
s(x1) = [0] x1 + [0]
false() = [0]
half(x1) = [0] x1 + [0]
plus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
gt(x1, x2) = [0] x1 + [0] x2 + [0]
not(x1) = [0] x1 + [0]
id(x1) = [0] x1 + [0]
zero() = [0]
times(x1, x2) = [0] x1 + [0] x2 + [0]
if_times(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
even^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
half^#(x1) = [0] x1 + [0]
c_3() = [0]
c_4(x1) = [0] x1 + [0]
plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_5(x1) = [0] x1 + [0]
c_6(x1) = [0] x1 + [0]
c_7(x1) = [0] x1 + [0]
c_8(x1) = [0] x1 + [0]
id^#(x1) = [0] x1 + [0]
c_9(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_10(x1) = [0] x1 + [0]
c_11(x1) = [0] x1 + [0]
not^#(x1) = [0] x1 + [0]
c_12(x1) = [0] x1 + [0]
gt^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_13() = [0]
c_14() = [0]
c_15(x1) = [0] x1 + [0]
times^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_16() = [0]
c_17(x1) = [0] x1 + [0]
if_times^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_18(x1) = [0] x1 + [0]
c_19(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {times^#(0(), y) -> c_16()}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(times^#) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
0() = [7]
times^#(x1, x2) = [1] x1 + [0] x2 + [7]
c_16() = [1]
* Path {18}: inherited
--------------------
This path is subsumed by the proof of path {18}->{20}->{6,9,7}->{8}.
* Path {18}->{19}: inherited
--------------------------
This path is subsumed by the proof of path {18}->{19}->{6,9,7}->{8}.
* Path {18}->{19}->{6,9,7}: inherited
-----------------------------------
This path is subsumed by the proof of path {18}->{19}->{6,9,7}->{8}.
* Path {18}->{19}->{6,9,7}->{8}: NA
---------------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {18}->{19}->{8}: NA
------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {18}->{20}: inherited
--------------------------
This path is subsumed by the proof of path {18}->{20}->{6,9,7}->{8}.
* Path {18}->{20}->{6,9,7}: inherited
-----------------------------------
This path is subsumed by the proof of path {18}->{20}->{6,9,7}->{8}.
* Path {18}->{20}->{6,9,7}->{8}: NA
---------------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {18}->{20}->{8}: MAYBE
---------------------------
The usable rules for this path are:
{ even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ if_times^#(false(), s(x), y) -> c_19(plus^#(y, times(x, y)))
, times^#(s(x), y) -> c_17(if_times^#(even(s(x)), s(x), y))
, plus^#(zero(), y) -> c_7(y)
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, times(0(), y) -> 0()
, times(s(x), y) -> if_times(even(s(x)), s(x), y)
, if_times(true(), s(x), y) ->
plus(times(half(s(x)), y), times(half(s(x)), y))
, if_times(false(), s(x), y) -> plus(y, times(x, y))
, half(0()) -> 0()
, half(s(s(x))) -> s(half(x))
, plus(s(x), s(y)) ->
s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
, plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x))
, plus(zero(), y) -> y
, plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y))))
, id(x) -> x
, if(true(), x, y) -> x
, if(false(), x, y) -> y
, not(x) -> if(x, false(), true())
, gt(s(x), zero()) -> true()
, gt(zero(), y) -> false()
, gt(s(x), s(y)) -> gt(x, y)}
Proof Output:
The input cannot be shown compatible
2) 'matrix-interpretation of dimension 1' failed due to the following reason:
The input cannot be shown compatible
3) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
4) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.