Problem Mixed outermost ex6

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputMixed outermost ex6

stdout:

MAYBE

Problem:
 f(x,x) -> f(i(x),g(g(x)))
 f(x,y) -> x
 g(x) -> i(x)
 f(x,i(x)) -> f(x,x)
 f(i(x),i(g(x))) -> a()

Proof:
 Complexity Transformation Processor:
  strict:
   f(x,x) -> f(i(x),g(g(x)))
   f(x,y) -> x
   g(x) -> i(x)
   f(x,i(x)) -> f(x,x)
   f(i(x),i(g(x))) -> a()
  weak:
   
  Matrix Interpretation Processor:
   dimension: 1
   max_matrix:
    1
    interpretation:
     [a] = 0,
     
     [g](x0) = x0 + 1,
     
     [i](x0) = x0,
     
     [f](x0, x1) = x0 + x1 + 12
    orientation:
     f(x,x) = 2x + 12 >= 2x + 14 = f(i(x),g(g(x)))
     
     f(x,y) = x + y + 12 >= x = x
     
     g(x) = x + 1 >= x = i(x)
     
     f(x,i(x)) = 2x + 12 >= 2x + 12 = f(x,x)
     
     f(i(x),i(g(x))) = 2x + 13 >= 0 = a()
    problem:
     strict:
      f(x,x) -> f(i(x),g(g(x)))
      f(x,i(x)) -> f(x,x)
     weak:
      f(x,y) -> x
      g(x) -> i(x)
      f(i(x),i(g(x))) -> a()
    Matrix Interpretation Processor:
     dimension: 1
     max_matrix:
      1
      interpretation:
       [a] = 132,
       
       [g](x0) = x0 + 44,
       
       [i](x0) = x0 + 44,
       
       [f](x0, x1) = x0 + x1
      orientation:
       f(x,x) = 2x >= 2x + 132 = f(i(x),g(g(x)))
       
       f(x,i(x)) = 2x + 44 >= 2x = f(x,x)
       
       f(x,y) = x + y >= x = x
       
       g(x) = x + 44 >= x + 44 = i(x)
       
       f(i(x),i(g(x))) = 2x + 132 >= 132 = a()
      problem:
       strict:
        f(x,x) -> f(i(x),g(g(x)))
       weak:
        f(x,i(x)) -> f(x,x)
        f(x,y) -> x
        g(x) -> i(x)
        f(i(x),i(g(x))) -> a()
      Open
  

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputMixed outermost ex6

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputMixed outermost ex6

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(x, x) -> f(i(x), g(g(x)))
     , f(x, y) -> x
     , g(x) -> i(x)
     , f(x, i(x)) -> f(x, x)
     , f(i(x), i(g(x))) -> a()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
              , 2: f^#(x, y) -> c_1()
              , 3: g^#(x) -> c_2()
              , 4: f^#(x, i(x)) -> c_3(f^#(x, x))
              , 5: f^#(i(x), i(g(x))) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{1,4}                                                     [         NA         ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4}: NA
             --------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [1]
                        [0 0 0]      [1]
                g(x1) = [1 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [0 0 0]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1() = [0]
                        [0]
                        [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                g(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1() = [0]
                        [0]
                        [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                g(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1() = [0]
                        [0]
                        [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1) = [0 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
                c_2() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
              , 2: f^#(x, y) -> c_1()
              , 3: g^#(x) -> c_2()
              , 4: f^#(x, i(x)) -> c_3(f^#(x, x))
              , 5: f^#(i(x), i(g(x))) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{1,4}                                                     [       MAYBE        ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
                g(x1) = [1 0] x1 + [3]
                        [0 0]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1() = [0]
                        [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
                  , f^#(x, i(x)) -> c_3(f^#(x, x))}
               Weak Rules: {g(x) -> i(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                g(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1() = [0]
                        [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                g(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1() = [0]
                        [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1) = [0 0] x1 + [7]
                          [0 0]      [7]
                c_2() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
              , 2: f^#(x, y) -> c_1()
              , 3: g^#(x) -> c_2()
              , 4: f^#(x, i(x)) -> c_3(f^#(x, x))
              , 5: f^#(i(x), i(g(x))) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{1,4}                                                     [       MAYBE        ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [1] x1 + [1]
                g(x1) = [1] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1() = [0]
                g^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
                  , f^#(x, i(x)) -> c_3(f^#(x, x))}
               Weak Rules: {g(x) -> i(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [1] x1 + [0]
                g(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1() = [0]
                g^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(g^#) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [1] x1 + [0]
                g(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1() = [0]
                g^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(g^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1() = [0]
                g^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(x) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1) = [0] x1 + [7]
                c_2() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputMixed outermost ex6

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputMixed outermost ex6

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(x, x) -> f(i(x), g(g(x)))
     , f(x, y) -> x
     , g(x) -> i(x)
     , f(x, i(x)) -> f(x, x)
     , f(i(x), i(g(x))) -> a()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
              , 2: f^#(x, y) -> c_1(x)
              , 3: g^#(x) -> c_2(x)
              , 4: f^#(x, i(x)) -> c_3(f^#(x, x))
              , 5: f^#(i(x), i(g(x))) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{1,4}                                                     [         NA         ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4}: NA
             --------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [1]
                        [0 0 0]      [1]
                g(x1) = [1 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [0 0 0]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                g(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [3 3 3] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 3 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                g(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                i(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                g^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x) -> c_2(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1) = [7 7 7] x1 + [7]
                          [7 7 7]      [7]
                          [7 7 7]      [7]
                c_2(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
              , 2: f^#(x, y) -> c_1(x)
              , 3: g^#(x) -> c_2(x)
              , 4: f^#(x, i(x)) -> c_3(f^#(x, x))
              , 5: f^#(i(x), i(g(x))) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{1,4}                                                     [       MAYBE        ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
                g(x1) = [1 0] x1 + [3]
                        [0 0]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
                  , f^#(x, i(x)) -> c_3(f^#(x, x))}
               Weak Rules: {g(x) -> i(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                g(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 3] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                g(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                i(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                g^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x) -> c_2(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1) = [7 7] x1 + [7]
                          [7 7]      [7]
                c_2(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
              , 2: f^#(x, y) -> c_1(x)
              , 3: g^#(x) -> c_2(x)
              , 4: f^#(x, i(x)) -> c_3(f^#(x, x))
              , 5: f^#(i(x), i(g(x))) -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{1,4}                                                     [       MAYBE        ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [1] x1 + [1]
                g(x1) = [1] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(x, x) -> c_0(f^#(i(x), g(g(x))))
                  , f^#(x, i(x)) -> c_3(f^#(x, x))}
               Weak Rules: {g(x) -> i(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [1] x1 + [2]
                g(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,4}->{5}: NA
             -------------------
             
             The usable rules for this path are:
             
               {g(x) -> i(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {1}, Uargs(g) = {1}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(g^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [1] x1 + [0]
                g(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(i) = {}, Uargs(g) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(g^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                i(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                g^#(x1) = [3] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(x) -> c_2(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g^#(x1) = [7] x1 + [7]
                c_2(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.