Tool CaT
stdout:
MAYBE
Problem:
minus(X,0()) -> X
minus(s(X),s(Y)) -> p(minus(X,Y))
p(s(X)) -> X
div(0(),s(Y)) -> 0()
div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y)))
Proof:
OpenTool IRC1
stdout:
MAYBE
Tool IRC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Rubio 04 gm |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ minus(X, 0()) -> X
, minus(s(X), s(Y)) -> p(minus(X, Y))
, p(s(X)) -> X
, div(0(), s(Y)) -> 0()
, div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))}
Proof Output:
'matrix-interpretation of dimension 1' proved the best result:
Details:
--------
'matrix-interpretation of dimension 1' succeeded with the following output:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ minus(X, 0()) -> X
, minus(s(X), s(Y)) -> p(minus(X, Y))
, p(s(X)) -> X
, div(0(), s(Y)) -> 0()
, div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))}
Proof Output:
The following argument positions are usable:
Uargs(minus) = {}, Uargs(s) = {1}, Uargs(p) = {1}, Uargs(div) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
minus(x1, x2) = [1] x1 + [0] x2 + [1]
0() = [4]
s(x1) = [1] x1 + [4]
p(x1) = [1] x1 + [0]
div(x1, x2) = [2] x1 + [0] x2 + [0]Tool RC1
stdout:
MAYBE
Tool RC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Rubio 04 gm |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ minus(X, 0()) -> X
, minus(s(X), s(Y)) -> p(minus(X, Y))
, p(s(X)) -> X
, div(0(), s(Y)) -> 0()
, div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))}
Proof Output:
'matrix-interpretation of dimension 1' proved the best result:
Details:
--------
'matrix-interpretation of dimension 1' succeeded with the following output:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ minus(X, 0()) -> X
, minus(s(X), s(Y)) -> p(minus(X, Y))
, p(s(X)) -> X
, div(0(), s(Y)) -> 0()
, div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))}
Proof Output:
The following argument positions are usable:
Uargs(minus) = {1}, Uargs(s) = {1}, Uargs(p) = {1},
Uargs(div) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
minus(x1, x2) = [1] x1 + [0] x2 + [1]
0() = [0]
s(x1) = [1] x1 + [2]
p(x1) = [1] x1 + [0]
div(x1, x2) = [3] x1 + [3] x2 + [0]